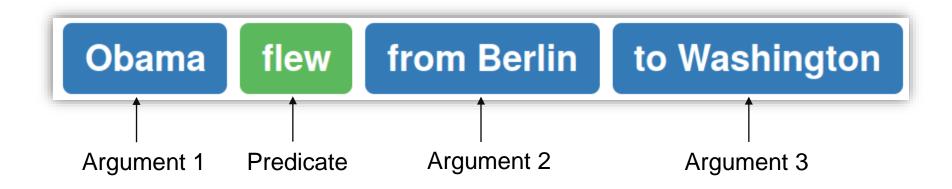


Analyzing Errors in OpenIE Systems

Rudolf Schneider

PhD. student @ DATEXIS

rudolf.schneider@beuth-hochschule.de


"Open Information Extraction (OpenIE) is an extraction paradigm that facilitates **domain-independent** discovery of relations extracted from text and readily scales to the **diversity** and **size** of the Web corpus."

(Banko et. al., 2007)

n-ary tupel consisting of *n Arguments* and one *Predicate*.

Methods do not agree on Common Benchmark

System	# Sentences	Domain	Metric	Type of Judge
TextRunner [2]	~ 400	Web	% Correct	Human (Authors)
ReVerb [5]	500	Web	Precision / Recall – AUC	Human (?)
KrakeN [3]	500	Web	% Correct	Human (?)
Ollie [1]	300	News, Wiki, Biology	Precision / Yield – AUC	Human (?)
ClausIE [4]	800	Web, Wiki, News	Precision / Yield	Human (?)
Stanford OpenIE [6]	2,01M Documents	News, Web, Forum	TAC KBP Slot Filling 2013 - Precision	Machine
NestlE [8]	400	Wiki, News	Informativeness	Human (2 CS-Students)

Four well known OpenIE systems evaluated on four datasets

Evaluated OpenIE Systems

- N-ary
 - OpenIE 4.2 [7]
 - ClausIE [4]
 - PredPat [12]
- Binary
 - Stanford OpenIE [6]
 - ClausIE (binary mode)

Datasets

Name	Type	Domain	Sent.	# Tuple
NYT-222	n-ary	News	222	222
WEB-500	binary	Web/News	500	461
PENN-100	binary	Mixed	100	51
OIE2016	n-ary	Wiki	3200	10359

Systems are quantitative and qualitative evaluated in two experiments

Quantitative Benchmark

- 2590 sentences
- Precision
- Recall
- F2 Score

Qualitative Benchmark

- 68 sentences
- 749 manually evaluated extractions
- Qualitative error classes

What is correct?

Strict Containment Match

- Gold Predicate is fully contained.
- Number of Arguments is equal.
- All arguments are fully contained.

Relaxed Containment Match

- Gold Predicate is fully contained.
- All arguments are fully contained.

Strict Containment vs. Relaxed Containment

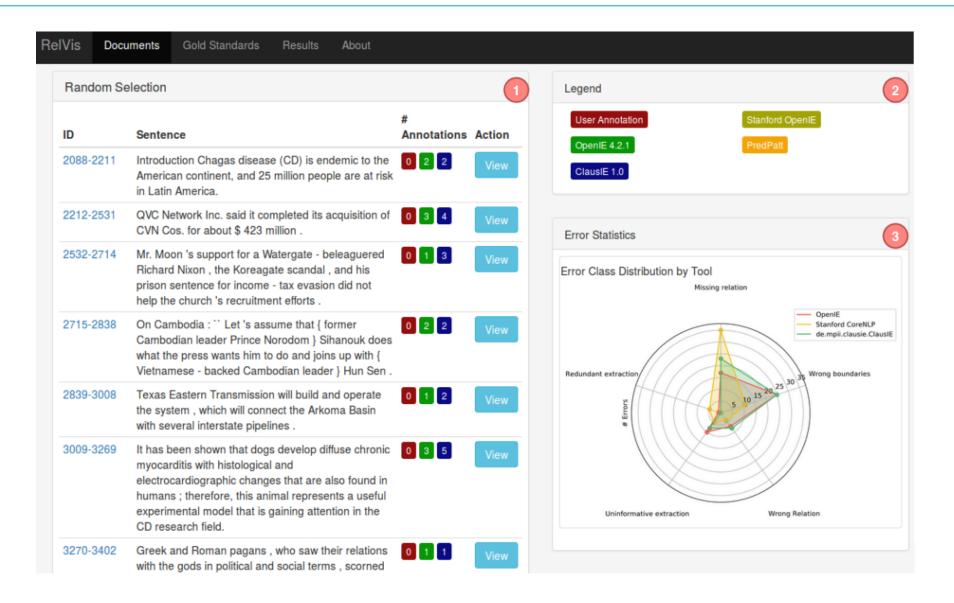
Strict Containment

Relaxed Containment

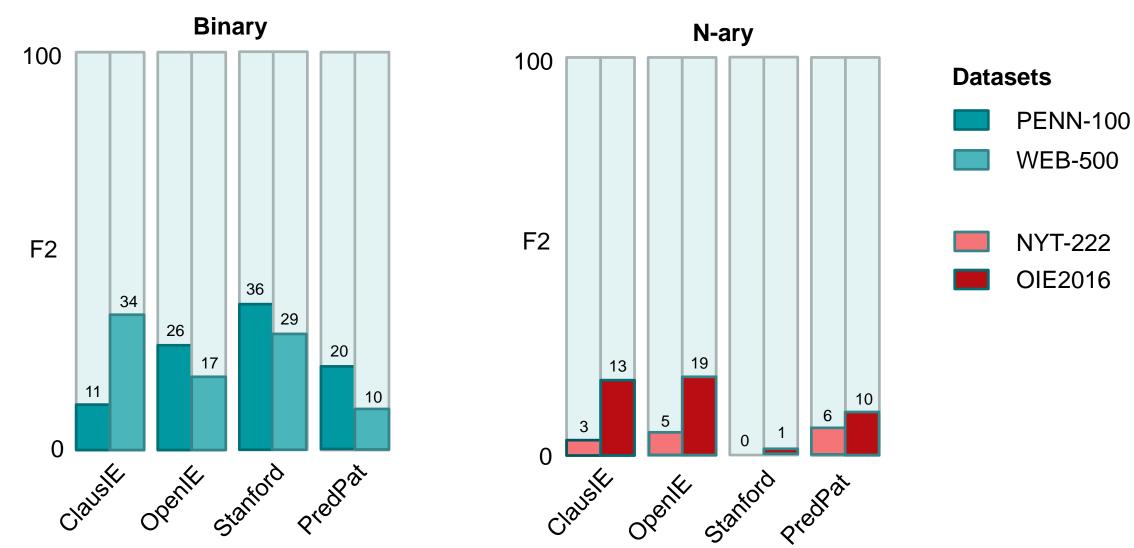
Gold Annotation

The airfield hosted an internationally recognised Air Show for several years.

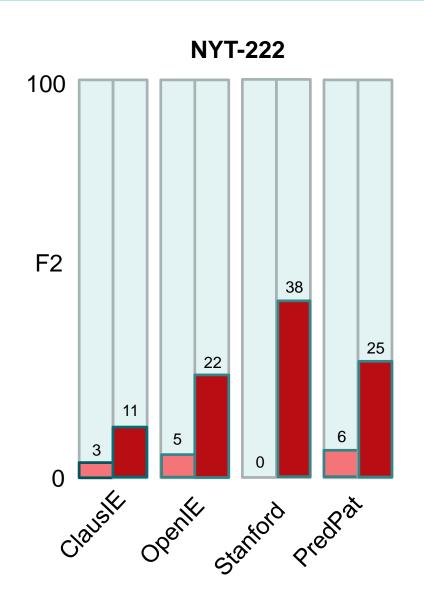
Predicted Annotation


The airfield hosted an internationally recognised Air Show

for several years


RelVis – Benchmarking Tool for OpenIE Systems

OpenIE systems seem to be biased towards binary tuples and not robust against noise



Evaluating boundaries is important

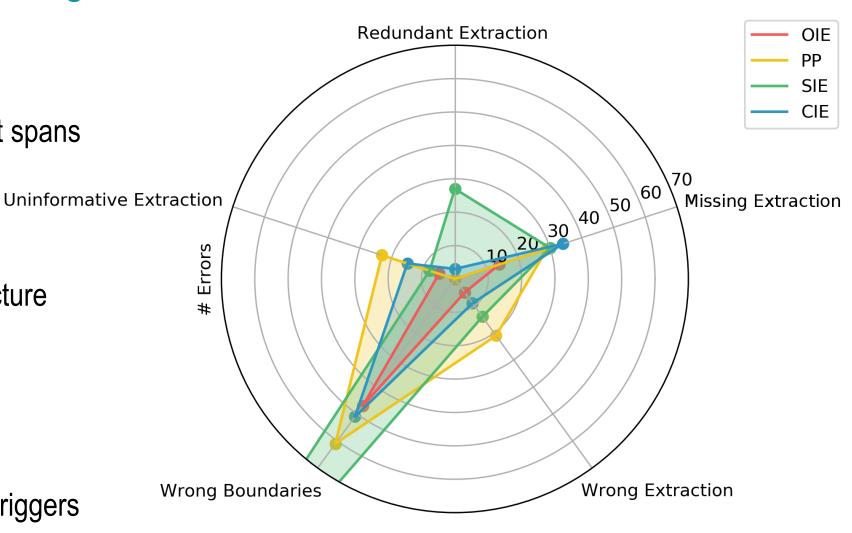
- Stanford outperforms all systems if relaxed match is applied
 - Over-specific arguments
 - Additional effort for downstream applications

Matching Strategy

- Strict Containment
- Relaxed Containment

Impact of Error Classes from Literature

Error Class	True Positives	False Positives	False Negatives
Wrong Boundaries [2]	Less	More	More
Redundant Extraction [4]	No Impact	More	No Impact
Missing Relation [5]	Less	No Impact	More
Uninformative Extraction [5]	No Impact	More	No Impact
Wrong Relation [6]	No Impact	More	No Impact
Out of Scope	No Impact	No Impact	No Impact



Error Occurrences of All Evaluated Systems

Wrong Boundaries and Missing Extractions are the main causes for errors

- Wrong Boundaries
 - Annotation style
 - Overestimating argument spans
- Missing extraction
 - Noise
 - Wrong intermediate structure
- Wrong and uninformative
 - Missed negations
 - Co-reference
 - Processing of adjectival triggers

We need adaptable and generalizing OpenIE Systems with a well defined Annotation policy

Task in general

We need a stringent formalized annotation policy

Datasets

- We observe many Out of Scope "errors"
 - Datasets do not cover the capabilities of current OpenIE systems.
- Large datasets with consistent annotation policy
- Datasets for idiosyncratic domains

Next generation OIE systems

- Apply normal forms form data base theory
- Be (fast) adaptable to downstream tasks
- Effective resolution of co-references
- (Do not rely on intermediate structure)
- Generalize better to unseen text
 - Robust against noisy data
 - Perform well on idiosyncratic texts

- [1] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, and others, "Open language learning for information extraction," in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012, pp. 523–534.
- [2] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, "Open Information Extraction from the Web.," in IJCAI, 2007, vol. 7, pp. 2670–2676.
- [3] A. Akbik and A. Löser, "Kraken: N-ary facts in open information extraction," in Proceedings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge Extraction, 2012, pp. 52–56.
- [4] L. Del Corro and R. Gemulla, "Clausie: clause-based open information extraction," in Proceedings of the 22nd international conference on World Wide Web, 2013, pp. 355–366.
- [5] A. Fader, S. Soderland, and O. Etzioni, "Identifying relations for open information extraction," in Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, pp. 1535–1545.
- [6] G. Angeli, M. J. Premkumar, and C. D. Manning, "Leveraging linguistic structure for open domain information extraction," Linguistics, no. 1/24, 2015.
- [7] "allenai/openie-standalone," GitHub. [Online]. Available: https://github.com/allenai/openie-standalone.
- [8] N. Bhutani, H. V. Jagadish, and D. R. Radev, "Nested Propositions in Open Information Extraction," in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 55–64.
- [9] G. Stanovsky and I. Dagan, "Creating a Large Benchmark for Open Information Extraction," in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, Texas, 2016, p. (to appear).
- [10] F. Mesquita, J. Schmidek, and D. Barbosa, "Effectiveness and Efficiency of Open Relation Extraction," in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 447–457.
- [11] M. Mausam, "Open Information Extraction Systems and Downstream Applications," presented at the International Joint Conference on Artificial Intelligence (IJCAI), New York, 2016.
- [12] Keisuke, Aaron Steven White, Drew Reisinger, et al. "Universal Decompositional Semantics on Universal Dependencies."