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ABSTRACT
The decision onwhat item to learn next in a course can be supported
by a recommender system (RS), which aims at making the learning
process more efficient and effective. However, learners and learning
activities frequently change over time. The question is: how are
timely appropriate recommendations of learning resources actually
evaluated and how can they be compared?

Researchers have found that, in addition to a standardized dataset
definition, there is also a lack of standardized definitions of evalua-
tion procedures for RS in the area of Technology Enhanced Learning.
This paper argues that, in a closed-course setting, a time-dependent
split into the training set and test set is more appropriate than the
usual cross-validation to evaluate the Top-N recommended learning
resources at various points in time. Moreover, a new measure is in-
troduced to determine the timeliness deviation between the point in
time of an item recommendation and the point in time of the actual
access by the user. Different recommender algorithms, including
two novel ones, are evaluated with the time-dependent evaluation
framework and the results, as well as the appropriateness of the
framework, are discussed.

CCS CONCEPTS
• Information systems→ Evaluation of retrieval results; Rec-
ommender systems; • Applied computing → Computer-assisted
instruction;

KEYWORDS
Time-Dependent Evaluation Framework, Educational Recommender
Systems, Timeliness Deviation

1 INTRODUCTION
Learning, especially Self-Regulated Learning, requires responsibil-
ity on the part of the learner which can be assisted by educational
recommender systems (RSs). These Learning Analytics predictors
aim at optimizing learning by making it more efficient and more
effective. Thereby, ”efficiency” describes the way to achieve a per-
sonal goal. In terms of learning in a closed-corpus setting like a
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course, a higher efficiency means optimizing the process, saving
effort and time to reach the course goal. ”Effectiveness”, in turn,
directly concerns the result achieved. A higher effectiveness means
to reach, e.g., a better mark in the exam or longer lasting knowledge.
Both can be improved through recommender systems that present
appropriate learning resources in the given situation to the user.

Drachsler et al. note that learners and learning activities fre-
quently change over time [9] which also directly affects the learner’s
goal (also see [10]). That is one reason why educational recommen-
dations depend more on time information than traditional recom-
mendations do. In particular, certain recommendations become
obsolete after a short time span, e.g., when the recommended learn-
ing resource has been studied by the students or the next lecture
focuses on a different topic. This leads to the requirement to rec-
ommend certain topics only at relevant times, which must be taken
into account when recommending appropriate resources. Some
recommender systems, namely the Time-Aware Recommender Sys-
tems (TARSs), include time attributes in their algorithms, such as
”time of the day, day of the week, and season of the year” [3]. This
improves recommendations from traditional domains [3] as well
as from Technology Enhanced Learning (TEL) [13]. However, the
question arises: how are appropriate recommendations of learning
resources actually evaluated and how can they be compared?

In general, evaluation is ”the identification, clarification, and
application of defensible criteria to determine an evaluation ob-
ject’s value, quality, utility, effectiveness, or significance in relation
to those criteria” [33]. Said and Bellogin [24] evaluated common
evaluation frameworks and protocols for general recommender
systems regardless of the particular application area. They con-
clude that the performance of an algorithm highly depends on the
evaluation framework and, thus, cannot be compared to the per-
formance of the same algorithm in another evaluation setting. In
their experiments, the results differ by up to 10% depending on
the evaluation framework. Moreover, Said and Bellogin note a lack
of ”rules or standards on how to evaluate a recommendation al-
gorithm” [24]. Campos et al. noticed that the existence of a huge
variety of evaluation approaches for general recommender systems
results in ”an increasing impediment to fairly compare results and
conclusions reported in different studies” [3]. Moreover, ”variations
in user interfaces”, ”data selection” and ”situational and personal
characteristics of users” lead to differences between qualitative and
quantitative evaluations [3].

These circumstances are even worse for RS in Technology En-
hanced Learning (TEL). Chatti et al. argue that ”an implementation
of different recommendation algorithms within a single recom-
mender system to compare against each other is missing in the TEL
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recommenders literature” [4]. Thereby, ”further evaluation proce-
dures that complement the technical evaluation approaches” for
the comparison of educational recommender systems are needed
to produce reliable and comparable results [21]. This is why the
underlying evaluation framework must remain the same in each
experiment when it should produce comparable results.

This paper defines a time-dependent evaluation framework to
investigate the precision of the Top-N recommended learning re-
sources at various points in time in closed-course settings. More-
over, a new measure called the timeliness deviation is introduced to
investigate the gap between the time when an item is recommended
and the time when it is actually accessed by the user.

The remainder of the paper is structured as follows: Section 2
introduces related work on offline simulations, evaluation frame-
works, data splitting, and cross-validation procedures as well as
common measurement values. The next section describes a time-
dependent evaluation framework which allows to appropriately an-
alyze the algorithms’ limited performances in educational courses.
A novel timeliness deviation measure is introduced in Section 4.
Then, five recommender systems are shortly introduced, includ-
ing two novel ones, and experiments based on the time-dependent
framework which includes the common precision measure, as well
as the novel timeliness deviation, are described. The findings of the
experiments as well as the benefits and limitations of this approach
are discussed in Section 6. The paper concludes with a summary
and an outlook.

2 RELATEDWORK
Evaluations of educational recommender systems can be either per-
formed online, which means directly in a real course or offline in a
simulation of a course. This paper focuses on offline evaluations
that utilize either simulated data or past real-world data in a simu-
lated environment [3]. This section deals with the main criteria to
evaluate recommender systems. It first discusses the necessity of
real-world data, then presents general evaluation frameworks, de-
scribes common procedures for data splitting and finally introduces
important measurement values.

2.1 Real-World Activity Data
Since data is not always available and it is cost intensive to con-
duct experiments in real learning environments, many researchers
simulate their users based on machine learning technologies or self-
developed student models [20, 25, 27]. These student simulators
should partially overcome the problem of massive testing with real
students [27]. However, the weakness of simulated student profiles
comes from the unpredictability of real human behavior. If today
researchers were able to model the complex learning patterns of all
students, the key task of a recommender system would have been
solved. Also, Campos et al. note, that ”the majority of past work on
[...] recommender systems has been focused on offline evaluation
protocols” [3] including those conducted with past but real data.

That is why we argue for experimenting with activity data that
have been collected in real-world courses. These evaluations are
not performed online in a live course setting, but rather offline
using past but real-world data. Thus, the evaluated recommender
algorithms do not influence the future behaviors of the learners as

a live evaluation would do. It rather aims at forecasting the usage
patterns that are already present in the data. This mixture is very
common for evaluations of general recommender systems [3, 22]
(and even for the Netflix prize [2]) and has been also applied for
TEL recommender systems [10, 21, 29].

The practice of using datasets from other domains than educa-
tion, and in particular from the movie domain, which is common
practice, ”lacks the necessary validity for proving recommendation
algorithms for TEL” [29]. Reliable datasets need to ”capture learner
interactions in real settings” and should give the opportunity for
”verification, repeatability, and comparisons of results” [29]. In an
offline evaluation with real data, the recommendation tasks should
directly support the tasks the users would perform anyway in the
system [12]. On the other hand, researchers should ”adequately
define the reference variables against which the adaptivity of the
system will be evaluated” [21]. Thus, it would be inappropriate to
use data from a different domain or from services that do not focus
on the same use case. Verbert et al. [29] argue that ”the continua-
tion of additional small-scale experiments with a limited amount
of learners that rate the relevance of suggested resources only adds
little contributions to an evidence driven knowledge base”.

Though real-world data from the educational domain should be
used, researchers point out that there is a lack of open, shareable
datasets which incorporate contextual learning data and allow for
a comparison of the results with common measures [8, 21, 30].
Besides the missing definition of any standardized formats, there is
an issue regarding privacy and legal concerns, which differs on a
country by country and institution by institution basis.

2.2 Evaluation Frameworks
Researchers have noted that besides the lack of open academic
datasets, there is also a lack of standardized definitions relating to
evaluation procedures for recommender systems in Technology
Enhanced Learning [8, 9, 21]. Those authors suggest approaches
but also comment that they must be further researched.

Weibelzahl [32] introduced a framework for a four-tiered evalua-
tion procedure consisting of the evaluation of the dataset, evaluation
of the inference mechanism, evaluation of the adaption decision, and
evaluation of the total interaction. Manouselis et al. [21] abstracted
this to a multi-layered evaluation approach for RSs in TEL which
can also be reduced to only two layers: the accuracy of the model and
the effectiveness of the changes made at the interface. The first layer
corresponds to quantitative evaluations, relating to measurements
of the algorithm’s outputs, the second to qualitative assessments re-
garding user perceptions. Similar to other RS evaluation procedures,
this work has a focus on the quantitative aspects.

According to Said and Bellogin [24], the four most important
evaluation dimensions are (1) the dataset, (2) the data splitting, (3) the
evaluation strategies and (4) the metrics (here called measurement
values). This work builds on these four dimensions and follows
additionally the approach of Campos et al. [3] who suggest that
researchers should describe the following criteria when presenting
evaluations: qualitative and quantitative details about the dataset
and its composition, approach of the training-test set splitting pro-
cedure and cross-validation approach, scoring order of the items as
well as the description of which items are considered as the Top-N
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target items and which items are considered as relevant for each
user in a Top-N recommendation task.

2.3 Data Splitting & Cross-Validation
When performing an offline evaluation with historical data, the
whole dataset must be split: To guarantee an objective prediction of
data, the training datasetTr must be separated from the test dataset
Te (cf. [12] [3]):

Tr ∩Te = ∅. (1)
The training data is used as input for the algorithms, which, in turn,
develop a model based on the patterns in the training data. The test
data, however, is unknown for the training phase and only utilized
to judge the performance of the algorithm with unknown data.

It is common sense that the split process happens randomly.
One method to train and evaluate algorithms is the n-fold cross-
validation. This cross-validation type is repeated n times (e.g., 10-
times for n = 10). During every iteration the whole dataset is split
into 90% of training data and 10% of evaluation data (cf. [12] [1]).

Campos et al. [3] suggested an alternative evaluation procedure
which is appropriate for systems whose recommendations depend
on time. Recommendations that are calculated and presented in a
closed-corpus environment for a limited time window only, such as
in a half-year course, depend more on temporal effects than open-
corpus recommendations without time limitations. Thus, evaluation
frameworks for Time-Aware Recommender Systems seem to be
relevant in such a context. While a time-based evaluation for TEL
recommender systems was also mentioned in a survey by Erdt et
al. [10], it is not clear whether this approach has been used so far.
Studies on TEL recommender systems are just based, if at all, on the
standard n-fold cross-validation setting until now (e.g., see [21, 29]).

2.4 Measurement Values
A critical question regarding evaluation is: how to measure ”appro-
priate” or ”good” recommendations. Campos et al. [3] pointed out
that there is no definition of what constitutes a ”good” recommen-
dation, but ”a commonly used approach is to establish the quality
(goodness) of recommendations by computing different measures
that assess various desired characteristics of an RS output”. Follow-
ing the same idea, Manouselis et al. [21] introduces four high-level
measures to define success criteria of recommender systems in TEL:

(1) Effectiveness describes the percentage of consumed items
during a learning phase (here a course).

(2) Efficiency indicates the time needed by the user to reach the
learning goal.

(3) Satisfaction is a subjective measure that must be assessed by
discussion with users.

(4) Drop-out rates represent the percentage of users who stop
participating in the learning setting and thus do not reach
the course goals.

Erdt et al. [10] classified similar measures into the groups of rec-
ommender system Performance, User-Centric Effects and Effects on
Learning. According to them, popular performance measures in
offline experiments are the Mean Absolute Error, Root Mean Square
Error, precision, recall and f-score.

Moreover, Manouselis et al. [21] incorporated some further mea-
sures from Social Network Analysis, such as Variety, Centrality,

Closeness, and Cohesion, as they seem also to be valid for learn-
ing networks. Due to the course setting of the collected datasets
and by following the considerations of Rada [23], the evaluations
in this paper have a special focus on efficiency and effectiveness.
According to Bellogin et al. [1], each measure itself is insufficient
for a fair comparison of different approaches. For instance, ”putting
more relevant items in the top-N is more important for real recom-
mendation effectiveness than being accurate with predicted rating
values” [1].

The effectiveness of a recommender system mostly refers to
its prediction accuracy [12]. Thereby, measurements focus on the
accuracy of the predicted relevance score – for instance through a
value often presented as the error [26] or through the precision of
the Top-N list [7]. Both approaches are introduced in the following.

Error Measurements to determine the prediction errors of the
underlying relevance score, such as the Mean Absolute Error (MAE)
and the Root Mean Square Error (RMSE) are commonly applied in
the RS domain [3], [12]. Thereby, the range of the error first and
foremost depends on the algorithm’s score used. In Technology En-
hanced Learning, an RS score can be a traditional rating, a predicted
numerical value representing the knowledge level, the number of
item accesses or even a Boolean value indicating whether an item
has been consumed or not.

While error measures are appropriate to compare deviations be-
tween predictions and the actually given relevance scores, they can
only be applied for the same type of scoring approach. For instance,
an error for a rating-based algorithm (from one to five stars) should
not be compared to the error of a knowledge-level-based algorithm
(with knowledge levels given in percent). Due to the different mean-
ings and ranges of the relevance scores, the resulting errors of
the algorithms differ in their meaning, as well. Moreover, errors
do not reveal anything about the appropriateness of the resulting
recommendations for a specific learner nor do they allow for a com-
parison of different algorithms that are based on different scoring
values. Cremonesi et al. [6] note that improvements in the error
values often do not translate into accuracy improvements. Taking
these points into consideration, the following measures might fit
better when comparing algorithms in the areas of Time-Aware
Recommender Systems and Technology Enhanced Learning.

RankingPrecision values are introduced in the following. Cam-
pos et al. [3] argue that the measure ranking precision is more appro-
priate for recommender system tasks than error measures. Ranking
precision values represent the coverage of relevant recommenda-
tions within the presented Top-N list which are typically given as
precision or recall.

Del Olmo and Gaudioso [7] introduce a confusion matrix to
explain the possible states which a recommendation might have –
see Table 1. The matrix shows the 4 item state categories: they can
either be recommended (a & b) or not (c & d) and at the same time
be relevant (a & c) or not (b & d). Here, the term ”relevant” comes
from the Information Retrieval domain: each learning resource that
has been consumed by the user (e.g., clicked, watched, answered)
is considered as relevant. As the TEL RS aims at also predicting the
future item consumption, a ”relevant” and ”recommended” item
is an item that has been accessed by the learner after it has been
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Table 1: Confusion matrix for item classification

Relevant Non-relevant
Recommended a b
Non-recommended c d

recommended. Thus, a relevant item for user u is an item that has
been accessed by the same user in the test set.

Based on the confusion matrix, precision is the portion of rec-
ommended relevant items in the set of all recommendations (cf.
[1, 7, 11, 31]):

precision =
a

a + b
. (2)

Recall, in turn, represents the share of recommended relevant
items in the set of all relevant items (cf. [7, 11, 31]):

recall =
a

a + c
. (3)

In order to express both values with a single measure, the F-
score (also known as the F1-measure or F1) is introduced, which
represents a harmonic mean of both (cf. [7, 11, 31]):

Fscore =
2 ∗ precision ∗ recall

precision + recall
. (4)

Nevertheless, a separate analysis of the precision and recall val-
ues allows for a more differentiated interpretation of the results.
That is why the F-score plays a minor role in the proposed evalua-
tion framework.

Additional RS Measurement Values have recently been in-
troduced which are not focusing on accuracy or ranking precision
tasks: among others novelty [5, 12, 14], diversity [5], sensitivity
[31], and specificity [31] as well as serendipity [12]. While they are
not utilized in the evaluation framework of the present work, they
could be considered in a future work. The new proposed measure-
ment value, however, extends this list of measures. It focuses on
the information on how much time it takes on average for an item
to be accessed after it has been first recommended.

3 TIME-DEPENDENT CROSS-VALIDATION
Again, evaluation results are only comparable when applying the
same methodological framework to all objects of investigations.
This is also reflected by the work of Said and Bellogin [24], who
identified discrepancies in the determined measures due to the
following evaluation dimensions: dataset, data splitting, evaluation
strategy, and metrics [24]. Each of the four evaluation dimensions
can be seen as a variable, where only one variable is allowed to be
changed within a reliable evaluation setting.

When, for example, the analyzed datasets are collected in a differ-
ent educational context with other context features, an evaluation
must apply the same data splitting approach, the same evaluation
strategies (in terms of algorithms) and the same measures in order
to produce reliable results. Moreover, the overall recommendation
goal of the algorithms must be explained. For instance, how does a
forecast of a future item’s rating support learners in their learning
process? That means, for instance, when a dataset does not com-
prise rating data, it should not be compared to other datasets based
only on ratings.

The evaluation of activity data in courses shows an additional
restriction: To simulate real-world behavior, the split of the training
set Tr and the test set Te must not be entirely random but should
depend on a particular point in time – which might be chosen
randomly in a given time interval [3]. This second restriction makes
it unfair to compare the recommender systems that have to produce
time-sensitive recommendations with other recommender systems.
Currently, traditional recommender systems are mostly evaluated
without taking into account time information for splitting (e.g., by
using the n-fold cross-validation).

Therefore, Campos et al. [3] suggest different specialized vali-
dation approaches for recommender systems with time-sensitive
recommendations. Two definitions seem to be appropriate for the
evaluation in closed-course settings. The increasing-time window
approach splits the whole dataset Tr and Te according to a vari-
able time threshold tthreshold so that all data in Tr are older than
tthreshold and all data inTe are younger. Of course, the time thresh-
old needs to be set within a reasonable interval, e.g., for a course,
between the start of the course tCouseStar t and the end of the
course tCourseEnd , so that Tr and Te are not empty – see Figure
1a.

The second approach, the fixed time-window cross-validation,
works in a similar manner to the increasing time-window split,
but uses a fixed time int representing the interval for both the
training dataset and the test dataset. In an educational course, the
threshold tthreshold is still variable, but the data inTr are restricted.
The time of each training data point tT r must be in the range
tthreshold − int < tT r < tthreshold and the time of each test data
point tT e must be in tthreshold < tT e < tthreshold +int (see Figure
1b).

Yi et al. [34] conducted an implicit fixed time-window cross-
validation for a search engine evaluation task (without stating it
as such). Thereby, the authors analyzed common measures for
different sizes of the time window: one month, one week and one
day. Interestingly, some measures (e.g., mean absolute precision)
were 40 % better for the weekly time windows compared with the
monthly time window. The weekly and daily settings, in contrast,
showed almost similar results. In conclusion, it is clear that the
splitting approach, as well as the size of the fixed time-window
interval, must be well-considered as they influence the evaluation
results.

It is important to notice that a time-window evaluation is not
comparable to a standard cross-validation evaluation as the lat-
ter does not reflect temporal effects. The cold start problem, for
instance, could not be analyzed with the standard n-fold cross-
validation. Thus, in our experiments, the precision results of time-
window cross-validations were always below the results of the
standard procedure. However, the introduced time-dependent eval-
uation framework allows for a better understanding of temporal
aspects in the data.

4 THE TIMELINESS DEVIATION
A major aspect of recommender systems in closed-course settings
is to present efficient recommendations at a reasonable time. This
means that recommendations should respect the needs of the learn-
ers in a timely fashion – supporting the decision process with
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Figure 1: Examples of (a) an increasing time-window cross-validation and (b) a fixed time-window cross-validation

appropriate recommendations for the given situation. In a time-
dependent evaluation setting where recommendations should be
consumed after they were recommended, the precision value only
indicates how many recommended items are relevant to the user.

For the precision value, it does not matter if an item is rele-
vant directly after it has been recommended or only at the end
of the course. While effectiveness can be reported with precision
and recall, efficient TEL recommendations correspond to the as-
pect of the timeliness. That is why this work introduces a novel
time-dependent evaluation measure: the timeliness deviation which
borrows from established concepts like RMSE and MAE. The basic
idea is that the new timeliness measure indicates how long it takes
between the presentation of a recommended item and the time at
which the user accesses this item.

4.1 The Mean Absolute Timeliness Deviation
TheMean Absolute Timeliness Deviation (MATD), short timeliness ,
indicates the mean absolute elapsed time for all existing recom-
mendation consumption value pairs < tr , tci > of the presented
Top-N list. Thereby, only item category a of the confusion matrix
which represents all recommended relevant items (see Table 1) is
considered for the analysis of < tr , tci >:

MATD =

∑K
i=1 tci − tr

K
, (5)

where tr represents the point in time of the recommendation of
item i presented to a user u and tci represents the point of time
of the next consumption of item i by the same user u. K is the
cardinality of the set of recommended and relevant items. Because of
the required time-dependent cross-validation setting, which splits
the prediction and test datasets by a time threshold tthreshold , tr
must occur before tci (tci ∈ Te) – see theMATD in Figure 2 for an
example.

All time values must be in the same time unit and refer to
the same relative point in time (e.g., as a Unix Timestamp in sec-
onds since January 1, 1970). Information on the time unit must be
given alongside the timeliness measure. This allows researchers
to better compare different timeliness deviations by converting

the given time unit appropriately. In a course setting with course
start tCourseStar t and course end tCourseEnd points, the following
definition applies:

tCourseStar t < tr ≤ tthreshold < tci ≤ tCourseEnd . (6)

If an item has not been consumed after being recommended, it
must not be considered for this calculation as tci − tr is then unde-
fined. The number K reduces in this case to the amount of existing
recommendation–consumption value pairs < tr , tci >. Formally, an
item i is only considered if it has been recommended and has been
consumed after its recommendation. r (u, i, tr ) is a binary function
that returns true if user u is given a recommendation for item i at
point in time tr . c(u, i, tci ) is a binary function that returns true if
user u consumed item i at time tci . The set of recommended and
relevant items has a cardinality of K and is defined as:

{i | r (u, i, tr ) ∧ c(u, j, tci ) ∧ (tr < tci )}. (7)

If no recommendation of the Top-N list is relevant, theMATD
value should not be considered for further averaging, e.g., for all
Top-N lists of all users. However, the share of the non-relevant
recommendations within the Top-N item list (that is neglected by
the timeliness value) is indicated by the precision value, defined
above. In this case, the precision would be 0. This is why a timeli-
ness measure should always be presented in combination with the
precision.

Similar to other accuracy measurements, single MATD values
can be combined, as the mean average, to obtain more general
results. It might represent the timeliness of all Top-N recommen-
dations for one user, the timeliness of the recommendations of all
users at a specific point in time or even a total timeliness for all
Top-N lists of all users over the entire period considered.

4.2 The Cleaned Timeliness Deviation
Practical experiments with real-world data show that the composi-
tion of the dataset can also influence the timeliness value. In the
following example, the dataset comprises only three users where
two are of particular interest (see Figure 2). User 1 logs into the
course at the very beginning of the analyzed period (e.g., during
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Figure 2: Examples of the MATD and CTD in an increasing time-window cross-validation with tr = tthreshold . The red dotted-
line represents the time-span until a user is first active after the recommendation. The MATD measure represents the time
between consumption of the recommended item and recommendation, while the CTD measure represents the time between
consumption of the recommended item and first action after the recommendation.

week one) and at the very end (e.g., week 4). User 3, in contrast, logs
into the course one day per week – for example, every Thursday.
Two issues arise:

First issue: In a time-dependent cross-validation with dataset
splitting on a per week basis, the chosen week for the splitting
threshold affects the timeliness value. If the data are split every
Friday, the minimum timeliness for user 3 would be at least one
week until the next item consumption (from Friday until Thursday).
If, in contrast, the chosen splitting day is aWednesday, theminimum
timeliness would be only one day (fromWednesday until Thursday).
Thus, the chosen splitting threshold would have a huge impact on
the timeliness value.

Second issue: When user 1 (who accessed items only at the begin-
ning and the end of the evaluation) and user 3 (who accessed items
on a weekly basis) are compared, their timeliness values would
differ dramatically. That means that the timeliness deviation of user
1 in week two would be three weeks. However, in reality, when this
user was offline the user would not obtain any recommendations
before the next use of the system (here in week 4). Summing up, the
distribution of consumption data over time affects the evaluation.

Taking both of these extreme cases into account, it makes sense
to subtract the next point in time tcf when the user has consumed
any item after the recommendation from the point in time of the
actual recommendation tr . Since a productive recommender would
use all the available data to train the model, the time of the recom-
mendation would be the same as the time of the splitting threshold:
tr = tthreshold . Item f is the first item that was consumed after tr
by the same user (tr < tcf ). This period can be formulated per user
as:

tF ir stConsumption = tcf − tr . (8)

On the one hand, the time span tF ir stConsumption between the
recommendation and the first consumption of any item can be seen
as optimal value for the timeliness measure. It is the lowest possible
value a timeliness deviation can take (tF ir stConsumption ≤ MATD).
Thus, a recommender system aims at forecasting the next consumed
item which corresponds to an MATD of tF ir stConsumption . On

the other hand, it can also be subtracted from the MATD in a so-
called Cleaned Timeliness Deviation (CTD). This allows for a better
comparison of the algorithm results independently of the login
patterns of the users:

CTD =

∑K
i=1 tci − tr

K
− (tcf − tr ) =

∑K
i=1 tci − tcf

K
. (9)

Figure 2 presents examples of CTD and tF ir stConsumption . The
intuitive approach to this alternative timeliness version is that the
time of a recommendation is shifted to be the same as the next item
consumption by the user. This circumstance enables researchers to
aim at reducing the timeliness measure to zero, which corresponds
to the best possible Cleaned Timeliness Deviation.

4.3 The Normalized Timeliness Deviation
Remember: In an increasing time-window cross-validation, the test
set size decreases over time by the same number of activities as
the training set increases. When further analyzing the introduced
example with three weekly splits between the four weeks of the
course, another issue arises: the timeliness value decreases by def-
inition according to the increasing time-window cross-validation.
The smaller the test set (after week 1 the test data comprises three
weeks; after week 3 the test data comprises only one week), the
smaller the maximum possible timeliness deviation. This is why
the timeliness can additionally be normalized by taking the total
duration of the current test set ∆tT e into account. The Normalized
Timeliness Deviation (NTD) builds on the definition of the CTD:

NTD =

∑K
i=1 tci − tcf

K ∗ ∆tT e
. (10)

As a result, the timeliness is given as a percentage of the total
available duration. The normalized version lacks information re-
garding the actual time difference (e.g., the time unit), but can be
better expressed in relation to the results of other evaluations. This
might help to compare the performance of algorithms in different
course settings – for instance, for various course periods.
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Figure 3: Comparison of the evaluated approaches (each given in the best setting) on the AWT data per week (indicated on the
x-axis; left: average precision (y-axis); right: Timeliness values for averaged CTD given in minutes (y-axis).

5 CONDUCTED EXPERIMENTS
We analyzed five different algorithms for the recommendation of
appropriate learning resources on a dataset from a university course.
The first one is a traditional rating prediction algorithm and serves
for comparison. The other four algorithms are time-aware. Thereby,
algorithm two and three have been designed and published by other
researchers and algorithm four and five are novel ones.

The main dataset has been collected in a course about Advanced
Web Technologies (AWT) and comprises 99 active students. In this
course, 6 teachers present various topics regarding trends in web
programming, such as web apps, multiscreen development, and
the web of things. A self-designed learning app gives access to the
course materials which comprise 1,006 learning objects grouped
into 106 learning units [16]. Thereby, a single learning object is
restricted to small learning periods of, at the most, five minutes. A
learning unit groups ten learning objects on average. We collected
44,421 Experience API (xAPI) statements which represent the learn-
ing object and learning unit accesses of the 99 students. That is an
average of 449 item accesses per user.

We used the ”increasing time-window” cross-validation since
it utilizes the whole past activity data for training the model. The
course data is split into 17 sub-datasets where the time threshold
shifts by seven days and is defined per week to be on Mondays at
midnight. The threshold definition is chosen in order to align the
training and test set weeks to calendar weeks. Thereby, with each
split, the duration of the training dataset increases by seven days,
and the test dataset decreases by the same amount. The evaluations
determine numbers on precision and timeliness (here: Cleaned
Timeliness Deviation).

5.1 Recommender Algorithms
The first two recommender systems are the basic Slope One algo-
rithm as Collaborative Filtering (CF)-baseline1 and the extended

1The traditional Slope One algorithm has been introduced by Lemire et al. [19]. How-
ever, Lemire et al. considered this approach only theoretically for TEL [18] and, at all,
it has only been rarely applied in education contexts (e.g., by Verbert et al. [29]).

version with incorporated time-weights which makes it a Time-
Aware Recommender System2. Another Item-based Collaborative
Filtering approach, the Time-based Recommender Approach for
Lecture Materials (TBRA) [13], which is based on time-dependent
item similarities for the recommendation of study materials, is
adapted and evaluated3. The fourth and the fifth algorithm are
novel ones. The fourth algorithm [17] builds an oriented graph
of the learning resources based on the prerequisites between the
resources given by teachers and on the navigation activities of class-
mates. It generates personalized learning paths based on the activi-
ties of classmates and the previous interactions of the concerned
learner. The next items on the predicted learning path are, there-
fore, considered as Top-N recommendations. The last algorithm is
called Smart Learning Recommender (SLR) [16]. It calculates the
learning need of user u at time t for each learning unit using nine
factors which include the last access, the performance on exercises
and the forgetting effect. The idea is to compensate for the typical
drawbacks of Collaborative Filtering, such as the cold-start phase,
with more detailed data, and to better adapt the recommendations
to the user’s needs.

5.2 Results
In the context of all evaluated recommender systems, the SLR per-
forms best on average regarding precision. Figure 3 visualizes the
precision and timeliness; for reasons of comparability, each result
is presented in the best setting for the Top-3 recommendations for
the AWT course. Because all systems are evaluated on the same
course, CTD is used. As seen on the precision chart, on a weekly
basis, the SLR (green line) is more scattered than the Learning Path
algorithm that shows a worse but more stable trend. Regarding
timeliness, the Learning Path algorithm still outperforms the SLR.
However, the SLR also shows low timeliness values that are the
second best on average. Table 2 compares the average results of the
algorithms over all course weeks.

2The time-weighted Slope One algorithm [15] is applied in the context of Technology
Enhanced Learning for the first time.
3The actual algorithm of presenting similar items [13] has been adopted in this work
to fit the recommender’s goal and the evaluation approach.
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Figure 4: Comparison of the precision (y-axis in left figure) and Normalized Timeliness Deviation (y-axis in right figure) of
the SLR reached in the three courses AWT, JavaFX and Energy-Consultant Training. For the sake of comparability, the time
presented on the x-axis is given in percent of the course progress instead of course weeks.

Table 2: Precision and Timeliness Deviation for all ap-
proaches on the AWT data

Algorithm Precision CTD
Slope One 0.459 26,648
TB Slope One 0.465 29,390
TBRA 0.512 36,852
Learning Paths 0.564 18,340
SLR 0.587 20,607

In total over 500 learners used the learning app in various course
settings from different educational institutions. Two additional
courses serve for comparisons of the timely effects: an open online
training on JavaFX with 51 students and a blended-learning course
on energy-consulting for 12 craftsmen of a chamber of crafts.

For a cross course comparison, the SLR algorithm has been ap-
plied to all three courses: the Advanced Web Technologies lecture,
the JavaFX online course and the blended learning course of the
Energy-Consultant Training. Figure 4 visualizes the precision and
timeliness results. As these courses do not have the same length in
weeks, NTD is used instead of CTD. At all, the average precision val-
ues are much higher for JavaFX (0.818) and the Energy-Consultant
Training (0.815) than for AWT (0.587). This confirms the findings
of Verbert et al. [29] that the precision results of educational rec-
ommender systems highly depend on the dataset selection and,
thus, implicitly on the course setting and the course participants.
Interestingly, the timeliness results for all courses are similar to
some extent, but the two courses with a final exam (AWT and the
energy consultant training) show a significant increase at the end.
The same negative effect can be observed in the precision results.
This is due to the fact that in both courses the participants learn
massively in the final days of the course. The users generate more
activity data and especially repeat items more often, which seems
to be hard to predict for the algorithm.

6 DISCUSSION
The findings of Verbert et al. [29] in their ”Dataset-driven research
for improving recommender systems for learning” indicate that the
evaluation of recommender systems depend highly on the dataset.
They measured the F1-score for Top-10 recommendations based
on the Tanimoto-Jaccard Coefficient [28] for 4 different datasets
(3 TEL datasets and the MovieLens dataset). The authors state F1-
score values which range, depending on the number of considered
users, between about 0.05 up to almost 0.3. While the present work
theoretically produces better F1-scores of up to 0.39 (for Top-30
recommendations of the TBRA approach), the results of the two
evaluations are not comparable at all. In the following, we present
the reasons.

The datasets differ in their application area, service origin, quan-
tity, and density – which massively impact the measurements, as
also noticed by Verbert et al. [29]. Therefore, it is important to eval-
uate RSs based on common data – which leads to a high demand
for open educational, academic datasets [8].

The algorithms and feature selections of Verbert’s approach and
the analysis in this work differ significantly. However, evaluations
should have at least the same goal when they are compared: While
Verbert et al. want to prove the appropriateness of the analyzed
datasets [29], the evaluation in this work analyzes the appropri-
ateness of different RS algorithms for the same dataset. As both
evaluations do not have consistency between the evaluation set-
ting regarding algorithm selection and data, the results are not
comparable.

While the standard cross-validation setting typically produces
reliable results, it does not work within a closed-course setting,
where, for instance, most items are relevant (e.g., because they
must be learned to pass the final exam). If every item in the course
would be marked as relevant, the cross-validation would produce
precision results of 100% every time, because no matter what is rec-
ommended, it is automatically relevant. That is why, it is important
to carefully define the set of relevant items – in this work, it is the
set of all items that have been accessed after the point in time of the
recommendation (item accesses in the test set). This, of course, is
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only possible in a time-window cross-validation. Thus, results of a
traditional evaluation procedure like the n-fold cross-validation for
the analysis of course item recommendations are not comparable
with the results introduced in this work.

6.1 Data Splitting
The validation procedure in this work is an ”increasing time-window”
cross-validation that better represents real-life conditions because
it splits the data according to the time sequence of the collected
data [3]. Usually, this manner of splitting gives worse results for
precision. However, it better represents the real-world conditions
of courses. For instance, the cold start phase is not considered by
a time-independent n-fold splitting where user–item activity is
always selected randomly from the whole period of the available
data. During our evaluations, different course phases have been
determined that influence precision and timeliness:

(1) Cold Start Phase at the beginning of a course.
(2) Guided Learning Period within the period of the regular

lectures or assessment submissions.
(3) Holidays and Breaks: When there are no face-to-face meet-

ings or submissions.
(4) Learning Phases for courses that end with a final assessment.
(5) After Course Phase where learners infrequently access the

course contents again.
The analyzed courses indicate also a high time dependency when

analyzing the different course weeks separately. Therefore, a rec-
ommender system for course items should be evaluated with a
time-dependent evaluation framework.

6.2 Measurement Values
In contrast to error and deviation measurements (such as MAE and
RMSE), precision, recall, and F1-score indicate the quality of the
Top-N composition independently of the underlying score range of
the algorithm. Since, especially for settings with a low number of
N items in the Top-N list, the recall value is comparatively low, it
has a huge effect on the F1-score. To some extent, the greater the
number of items presented in the Top-N list, the higher the recall
value and the higher the resulting F1-score. Thus, analyses of recall
values in different Top-N settings would indicate that it is better to
present more items to the user as higher recall values are reached.
However, a very large number of presented recommendations of-
fered at a single glance is counterproductive to the main aim of a
recommender system. When the user is overwhelmed by the num-
ber of recommendations, the learner’s item selection process is not
supported at all. Thus, in the case of a closed-corpus recommender
system, the recall value can be neglected when the learner should
learn all relevant items. It is not important to indicate how many of
the relevant items are presented in the Top-N list (recall), but how
many presented items are relevant (precision).

Precision, recall, and F-measures do not yield information about
the timely relevance of the recommendations. Although relevant
items are in the test set, they might only become relevant at the end
of a course. The introduced timeliness measures take this point into
account and indicate average time deviations which can be stated
as an absolute value (in order to classify the results as in the MATD
and CTD) or as a normalized value presenting the timeliness in

relation to the possible time range (as done via the NTD). In contrast
to precision and recall, the timeliness measure must be as low as
possible. However, it works only in conjunction with the precision
value, as all non-relevant (or not-accessed) recommendations are
not covered by the timeliness measures. Thus, its main aim is to
support the differentiation between algorithms when they show
similar precision results.

6.3 Limitations
The time-window cross-validations also have some drawbacks –
especially when the timespan of the dataset is small. For closed-
corpus courses, an increasing time-window cross-validation can
only be applied in the time between course start and course end.
Thereby, the first and the last threshold splits are likely to show
worse results compared to the rest. This is an effect of small dataset
sizes: In the case of the conducted courses, the first split (week 1
for training and the rest for testing) does not allow for an adequate
training of the algorithms. Moreover, the last split (all but the last
week for training and just the last week for testing) does not allow
the recommendations to be tested in the same way as done before.
The test set comprises a much smaller dataset than the training set
and thus it is challenging to identify items for the final week. In
turn, the recall value increases, and in the end indicates the same
effect, because there are fewer items in the test set that have a
higher probability of being part of the Top-N list. However, the
conducted experiments show that the number of activities increases
in the final few weeks of a course (especially for courses with
final assessments). This lessens the effect at the end. Moreover, the
presented limitations represent precisely the conditions of a real
course where a recommender system does not have very much data
at the beginning and where it must recommend very focused items
at the end.

7 CONCLUSION
Time is important for recommender systems for learning items
in a closed-course. Thus, these recommendations should be ana-
lyzed with the help of a time-dependent evaluation framework, as
traditional evaluation procedures, such as the common n-fold cross-
validation setting, randomly split the item data regardless of any
time constraints. However, a course typically comprises different
time phases that must be taken into account for the evaluation. The
paper proposed a novel evaluation framework for recommender sys-
tems in closed-courses, and for TARSs in general. It is adapted from
other research areas and incorporates qualitative and quantitative
criteria. Therefore, researchers must describe their methodological
procedure and can utilize commonmeasures if their meaning for the
evaluation is well defined. The goal of presenting appropriate rec-
ommendations was translated into those measurable values, such as
the precision and timeliness deviation. The latter is a new measure
that indicates the time accuracy of the recommendations. The Mean
Absolute Timeliness Deviation, Cleaned Timeliness Deviation and
Normalized Timeliness Deviation present different flavors of the
average timespan when a recommended relevant item has been
accessed after its recommendation.

The findings of the discussion shall encourage researchers to fol-
low this special formal evaluation framework. Further work needs
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to be done to evaluate existing RS algorithms in TEL with this new
framework as well as to analyze and compare the appropriateness
of these algorithms in different course settings and phases.
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