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ABSTRACT 
An efficient way to determine the far field radiation of turbulent flames is by using hybrid 
approaches that couple full non linear flow equations solvers (CFD codes) with linear 
propagation acoustic methods. One possible acoustic method is the Lighthill’s acoustic analogy 
which expresses the sound pressure in terms of a volume integral over the sound source 
distribution. This method has a high computational cost since the volume occupied by the sound 
sources has to be discretized. Purpose of this study is to develop a method that reduces the 
time of computation by rewriting the volume integral in terms of surface integrals alone. In this 
work, the basic ideas of the method are presented and the accuracy of the procedure is tested 
using a simple configuration that has an analytical solution. 
 
 
INTRODUCTION  
In previous works [1],[2], a hybrid method coupling an incompressible Large Eddy Simulation 
(LES) with the Equivalent Source Method (ESM) and the Boundary Element Method (BEM) has 
been used to determine the sound radiation of open turbulent flames. The velocity distribution 
over a cylindrical surface (control surface) surrounding the flame was obtained by the LES and 
transferred to the ESM and BEM as a Neumann boundary condition. From the spectrum of 
these unsteady data, the sound power and the radiation patterns of the flame were computed in 
a frequency range extending from 40 Hz to 5000 Hz. Conditions for the validity of the method 
are: 1) all sources should be enclosed by the control surface and 2) outside the cylindrical 
surface, the medium should be homogeneous. The first condition is easier to fulfil than the 
second one, particularly by jet flames where the region of non uniform mean velocity could 
extend downstream tens of times the nozzle diameter. In our case, the size of the LES 
computational domain was extended as long as possible trying to diminish the effect of the non 
uniformity of the medium and keeping the calculation time in reasonable limits (LES 
computations were with one processor). Comparison of the numerical results with 
measurements showed an overestimation of the spectral sound power at middle and high 
frequencies. Analysis of the intensity spectra in different points around the flame suggests that 
the effect of the inhomogeneity of the medium may not be negligible. 
 
This work pretends to improve our hybrid method by considering sound propagation in 
inhomogeneous medium using the acoustic analogy but avoiding the direct evaluation of the 
three-dimensional volume integral. By open flames, the information about the “equivalent 
source terms” should be taken direct from the CFD calculation, while by enclosed flames, these 
sources may in some cases have to be modelled, since in some codes, no data is available 
outside the combustion chamber.  
 
DESCRIPTION OF THE METHOD 
We consider that all acoustic sources of the flame are located inside the control surface S0 
whose normal vector n0 is pointing to the outside and completely encloses the flame (see Fig. 
1a). At the surface S0, the velocity field is provided by the CFD calculation. Outside S0, there is 
an inhomogeneous region in the space of volume Ω delimited by the surface S1 (with normal 
vector n1 also pointing to the outside), whose density and sound velocity vary locally, ρ(x), c(x).  
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To determine the sound radiation, the space is divided in two regions (I and II) where the 
following differential equations have to be solved: 
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where k=ω/c is the wavelength and DNL represents terms containing all non homogeneities. 
Since the sound speed in Ω is not constant, k depends on the position. 
The boundary conditions at the interface between regions I and II demand continuity of pressure 
and particle velocity 
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Figure 1: Description of the flame model 
 

Following the original acoustic analogy, the differential equation in region I can be written as: 
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ω  and k1 a constant arbitrary wave number. We note, that the 
source term at the right hand side contains also the pressure (unless k=k1), i.e. the pressure in 
Ω should be known. For the following derivations, Qω is considered to be given. Our new model 
has now a homogeneous medium surrounding the control surface S0 and an additional source 
distribution Qω (see Fig. 1b). 
 
Using the usual boundary element procedure, the differential equations in (1) and (3) are 
transformed into their integral form: 
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where  defines a field point and xr yr  a point at the surface, and the constants: 
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In Eq. (4), we can recognize the volume integral that increases the computational cost of the 
actual expression for the sound pressure. 
According to the theory of differential equations, the general solution pI can be written as the 
sum of a homogeneous and a particular solution of Eq (3):   pI=ph+pu, where ph is the solution of 
the homogeneous equation and fulfil the boundary conditions, and pu solves the 
inhomogeneous equation but does not fulfil the boundary conditions. 
 
For the particular solution pu, a relation similar to (4) applies: 
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We can move the surface integrals of Eq. (5) to the left side and the volume integral  

can be written in terms of surface integrals. 

∫
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Inserting (5) in (4), the new expression for the sound pressure in region I is given by: 
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Eq. (6) demonstrates that if a particular solution of the inhomogeneous differential equation is 
known, the pressure could be written in terms of surface integrals alone. 
 
For most hybrid approaches, the source term Qω is known from the CFD calculations and not pu. 
Hence, the particular solution has to be determined. A usual way to approximate a function is 
expanding it in a series of basis functions ψj 
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When we replace (7) in (6), we obtain then: 
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where the coefficients αj are still unknown. 
Now we can use the fact that the source term Qω is given. Since pu is a solution of the 
inhomogeneous equation, we can determine the values of αj from the following relation: 
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and by discretizing the surfaces S0 and S1, a linear system of equations can be deduced. 
 
The same relations (8) and (9) are derived under the concept of the Dual Reciprocity BEM in [3] 
but in reverse order, starting by fixing the functions fj 
 
The success of the method depends obviously on the set of functions ψj used and how good the 
source term Q is reproduced. From Eq. (9), it is clear that the set of basis functions can not be 
the solutions of the homogeneous Helmholtz equation. 
 
NUMERICAL EXAMPLE 
The accuracy of the method has been tested applying it to compute the sound radiation of a 
spherical flame [3]. The flame model consists of a spherical volume of hot gas with radius a, 
density ρ1, sound speed c1 and a sound source distribution Qω=Q(r), which is constant for all 
frequencies. The flame is surrounded by air with constants ρ0 and c0 (see Fig. 2a) 
 
The analytical solution has the form: 
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and the constants A and T are determined from the boundary conditions in Eq. (2) 
 
 

 
 

(a) 
 

(b)
 

Figure 2: a) Spherical flame; b) Discretization points 
 
 
The control surface S1 in Eq. (6) is given by r=a while there is no control surface S0. The 
expanding functions chosen to define pu where the same used in [5]: 
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with corresponding functions: 

jj rxf +=1)(r        (Eq. 12) 
 
The flame surface was represented by a sphere with 640 elements. For the determination of the 
coefficients αj, besides the elements at the spherical surface, L=200 points in the interior of the 
sphere where taken (Fig. 2b), i.e, pu was approximated with a total of 840 functions. 
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Figure 3: Comparison of the sound pressure at different positions 
 
 
Fig. 3 shows a comparison of the analytical and theoretical values of the sound pressure. The 
agreement between analytical and numerical results is excellent. Only at the interface between 
Region I and II, the error of the numerical calculations is noticeable, but this error does not 
affect the sound power (see Fig. 4). 
 

 
 

Figure 4: Sound power level in the frequency domain 
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SUMMARY 
A method to calculate the sound radiation of flames considering the propagation in 
inhomogeneous medium based on an integral formulation has been presented. The velocity 
field at a control surface surrounding the flame, has to be previously determined (with a CFD 
code, for example) and the inhomogeneities of the medium have to be represented as source 
terms. The good agreement between numerical and analytical results obtained from a simple 
case encourages the application to more complex configurations. 
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