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Introduction

In preceding publications [1, 2], we discussed the pos-
sibility to incorporate an infinite impedance plane into
the direct Boundary-Element-Method (BEM) by means
of an appropriate Green’s function. This approach does
not require a discretization of the impedance plane,
since the Green’s function fully takes into account the
effects of reflection and absorption of the sound field
caused by the impedance plane. The implementation was
verified by analytical test cases for radiation problems.
Now we focus on the scattering problem in presence
of an impedance plane. The extension of the BEM-
half space approach makes it possible to investigate the
influence of the ground impedance on the well known
horn effect of the tyre/road interface by means of BEM-
simulations. The horn effect, an amplification mechanism
of the horn-like geometry of the tyre/road interface, was
experimentally investigated in a previous publications
[3, 4]. These measurements serve as validation data for
the BEM solutions. After a short review of the theory,
we discuss the computational model, the numerical
treatment of the complex horn-like geometry and the
influence of a very soft impedance ground on the horn
effect.

Theoretical background

The basis for the BEM is the Helmholtz-Integral-
Equation (HIE), here for exterior scattering problems,

C(�x)p(�x) =

∫
SQ

(
p(�y)

∂g(�x, �y)

∂�ny

− ∂p(�y)

∂�ny

g(�x, �y)

)
dSy

+ pinc(�x) (1)

with

C(�y) =

⎧⎪⎨
⎪⎩

1 �x in the exterior domain,
1
2 �x on the surface SQ,

0 �x in the interior domain.

The incident sound field pinc is taken into account
by an additional free term in the Helmholtz-Integral-
Equation. In case of a half-space problem the total
incident sound field pinc consists of the direct wave from
the source psrc and the wave, which is emitted by the
source and scattered by the infinite plane pp, that means
pinc = psrc+pp [5]. After discretising the surface SQ into
elements, a matrix equation for p(�x) is obtained

Cp = Hp + i ωGv + pinc, (2)

in which p and v are the pressure and normal velocity at
the surface elements and the matrices H and G contain
the kernel functions ∂g(�x, �y)/∂�ny and g(�x, �y). The core
of the HIE is the Green’s function g(�x, �y). As solution
of the wave equation it describes the sound propagation
between point �y = (xs, ys, zs) and point �x = (x, y, z)
and has to fulfil the boundary conditions on the surfaces
SQ and Sp (see Fig. 1) as well as Sommerfelds radiation
condition at infinity. In case of a rigid infinite plane, the
appropriate Green’s function is

G(�x, �y) =
e− ikR1

4πR1
+

e− ikR2

4πR2
, (3)

with k = ω/c0, R1 = ||�y − �x|| and R2 = ||�y − �x′||. �x′

is the image of �x, mirrored by the infinite impedance
plane. The time dependency ei ωt is omitted throughout
the paper. Considering an arbitrary finite impedance
boundary condition on the plane, a possible solution
G(�x, �y) is thoroughly discussed in [2] and [6]:

G(�x, �y) =
e− ikR1

4πR1
+

e− ikR2

4πR2

+
iγ

2π

∫ 0

−∞

e− ik
√

ρ2+(z+zs+iζ)2√
ρ2 + (z + zs + iζ)2

e− iγζdζ, (4)

with ρ =
√

(x− xs)2 + (y − ys)2 as horizontal distance
between �x and �y. The complex quantity γ = �{γ} +
i�{γ} follows from the plane’s normalized impedance,
γ = ik/Z0 with Z0 = Z/(ρ0c0) and ρ0c0 as impedance
of the ambient fluid. Eq. (4) fulfils any arbitrary
prescribed boundary condition on the plane and is
appropriate to be implemented in a BEM code. The
successful implementation of (4) in our in-house BEM-
code BemLab was shown in [1] and [2] by means of
various test cases.

Configuration

The investigated configuration is shown in Fig. 1. The
horn effect is an amplification of the sound field radiated
by sources close the the contact area of tyre and plane Sp

at the field point �xfp [3]. The amplification is expressed
as

ΔL = 20 log10

∣∣∣pts(�xfp)

ps(�xfp)

∣∣∣. (5)

pts(�xfp) represents the sound pressure at the field point
in the presence of the tyre, ps(�xfp) is the field point sound
pressure in the absence of the tyre. The horn’s centre is
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monopole source

field point
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Figure 1: Position of tyre, monopole source and field point
in the halfspace setting

located at the point of origin at (0, 0, 0). The source is
a monopole source, located at the plane in a distance of
80 mm from the horn’s centre at �yscr = (8 · 10−2m, 0,
0), its source strength is Asrc = 1 N/m. The field point
is placed at �xfp = (1m, 0, 0). The tyre is assumed to
have a rigid boundary condition, i.e. the term ∂p(�y)/∂�ny

vanishes on SQ.

Tyre model

The tyre model does not have any tread pattern, a
diameter of 62 cm and a width of 22 cm. In preliminary
studies the most appropriate computational model was
identified using LMS Sysnoise. A square and a rounded
tyre model profile was tested, see Fig. 2, and the influence
of a slight uplift of the tyre was investigated. The
reference solution was the measured horn effect of the
described configuration over rigid ground. A raise of the

square profile 
rounded profile

y

z

Figure 2: Cross section of the square and rounded tyre
model

tyre is favourable in order to weaken the near-singularity
of the integrand in (4), which occurs if both �x and �y
are close to infinite plane, i.e. if the combined height
z + zs is very small. As it is discussed in [3], the horn
effect is very sensitive to any modifications of the horn
geometry and the studies show the same effect. The
influence of the configuration parameters can be seen in
Fig. 3. The upper panel shows the strong influence of the
height of the tyre over the plane. Only a few millimetres
significantly change the amplification characteristic. For
this study the square shaped tyre was used. The lower
panel shows a comparison of the horn effect of the
rounded and the square shaped tyre. The tyre with
the square cross section leads to an overestimation of

the amplification level ΔL. In this variation both types
of tyres were raised by 1 mm. We decided to use the
rounded tyre model, raised by 1 mm for our calculations.
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Figure 3: Amplification due to the horn effect for a tyre
above a rigid plane. Upper panel: Dependence of ΔL on
the heigth of the tyre over the rigid plane, lower panel:

Dependence of ΔL on the profile of the tyre. Measurement
data from [3].

Numerical treatment of the horn

geometry

The BemLab-code uses a rough but fast one point
integration for the evaluation of the discretised integral
equation on SQ. Considering the surface area close to
plane, this approach is not sufficient, since in this area
the ”narrow gap” problem is encountered. Similar to the
problem of very close boundary surfaces, such as narrow
gaps or very thin structures, a near-singularity of the
kernel functions occurs due a very small R2 in the second
term of (3) and (4). Our first approach was a refinement
of this surface area until the element size matches the
distance from its centre to the plane. The resulting tyre’s
surface mesh can be seen in Fig. 4. The figure shows

5 10 15 20 25 30 35 40
SPL [dB]

Figure 4: SPL on the refined surface mesh of the tyre at 985
Hz. The tyre is seen from the bottom.

the sound pressure level distribution (SPL) on the tyre’s
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surface at 985 Hz. Unfortunately, this approach leads
to a doubling of the total number of elements. Second,
we applied an adapted integration method, recently
proposed in [7]. Each surface element is subdivided into
intervals proportional to the relative distance between
element’s centre and plane. After assigning Gauss-
Legendre integration points to the element subdivisions,
the values of g(�x, �y) and ∂g(�x, �y)/∂�ny can be determined.
The total number of elements remains the same as for
the one-point-integration. The resulting distribution of
integration points on the critical surface area of the
tyre is shown in Fig. 5. While the finer mesh allows

Figure 5: SPL on the surface mesh of the tyre at 985 Hz.
The Gauss-Legendre integration points, resulting from the
adapted integration method, are plotted as red points.

a higher resolution of the sound pressure distribution
on the tyre’s surface, the field point pressure in 1 m
distance from the horn’s centre can be modelled very
well with both approaches as it is shown in Fig. 6. The
resulting amplification level ΔL does not differ regarding
the two methods, though the adapted integration method
is considerably less time and memory consuming. In

10
2

10
3

−2

0

2

4

6

8

10

12

14

16

freq [Hz]

Δ 
L

refined surface mesh 
adapted integration method
measurement

Figure 6: Amplification due to the horn effect of a tyre
above rigid ground calculated with the refined tyre model
and the adapted integration method on the basis of element
subdivision. Measurement data from [3].

general, the computational results show an excellent
agreement with the measured frequency response of ΔL.

Influence of the impedance plane

Considering (4) the most expensive step is the evaluation
of the improper integral for every matrix coefficient
of H and G. For some configurations the very fast
Gauss-Laguerre quadrature can be applied to solve the
integral, otherwise an adaptive multilevel quadrature has
to be used, which provides reliable results for all possible
configurations, but is much slower [2]. The usage of the
Gauss-Laguerre quadrature depends mainly on γ and
the combined height of �x and �y, z + zs. Generally,
the application of the Gauss-Laguerre quadrature is
restricted to configurations with �{γ} > 1.

In the following, we choose a very soft rigidly-backed
layer with an effective flow resistivity of Reff =
20 kPas/m2 as impedance plane. The height of the
layer is 7 cm. Impedance and γ, respectively, of such
a layer can be obtained by the impedance model of
Delany&Bazley [8]. Fig. 7 shows the contour plot of
necessary integration points of the Gauss-Laguerre
quadrature depending on frequency and combined
height z + zs. As it can be seen, small heights of
�x and �y and low frequencies are very unfavourable
combinations regarding the application of the Gauss-
Laguerre quadrature. In case, the number of integration
points exceeds 100, the kernel functions have to be
evaluated by the multilevel quadrature. The evaluation
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Figure 7: Contour plot of the necessary number of
integration points to solve the integral in (4) by means of
the Gauss-Laguerre quadrature depending on frequency and
γ, respectively, and the combined height of �x and �y.

of the matrix coefficients are the bottleneck of a BEM
calculation including an impedance plane. While the
calculation of one frequency step in case of a rigid plane
takes around 0.3 minutes, it can take hours in case of a
finite impedance of the ground.

Fig. 8 shows the resulting amplification due to the
horn effect of a tyre above a rigid plane and above
the soft impedance layer. The amplification levels ΔL
differ significantly. In case of the impedance layer, the
frequency of maximum amplification is shifted to lower
frequencies and the total amplification level is dramati-

NAG/DAGA 2009 - Rotterdam

651



cally reduced. Above 1 kHz the frequency response of ΔL
has a more rough characteristic. Either, the model starts
to be numerically unstable or the roughness results from
interferences of the sound field. This should be clarified
by means of additional calculations with finer models.
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Figure 8: Amplification due to the horn effect of a tyre over
rigid ground and over a very soft impedance layer

Fig. 9 shows the calculated and measured amplification
ΔL for a slightly different configuration. The impedance
plane is represented by a rigidly-backed mineral wool
layer of thickness 1.6 cm and Reff = 124 kPas/m2.
The tyre is raised by 1.85 cm. The source is located
at �ysrc=(18.2 cm, 0, 0) and the fieldpoint is at �xfp =
(0.98 cm, 0, 19.7 cm). The predicted amplification
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Figure 9: Calculated and measured horn effect of a tyre
above an plane of finite impedance. Measurement from [4].

matches the measured frequency response very well. The
measured curve shows more fluctuations but this might
be due to a reverberant measurement environment or
the finite size of the real mineral wool layer. The
main amplification characteristic of the given setting
can be modelled correctly. The calculation was limited
towards the lower frequency range due to the increasing
computational effort.

Summary

In this paper the influence of the impedance of an
infinite plane on the horn effect was investigated by
means of BEM-simulations. The horn-like geometry of

the type/plane interface represents a geometrical and
numerical complex situation. Since the horn effect is
very sensitive to any geometrical modification, the tyre
can not be lifted much without disturbing the effect.
Close to the contact are of tyre and plane, the ”narrow
gap” problem is encountered, which requires a special
numerical treatment. We have implemented successfully
two approaches to handle the near-singularity of the
kernel functions in the narrow gap area and have achieved
an excellent agreement with measurement data for the
case of a rigid ground. The evaluation of the kernel
functions in presence of a plane of finite impedance is
very time-consuming due to this difficult configuration.
Nevertheless, we could show the strong influence of a very
soft impedance layer on the horn effect. Additionally, a
comparison with measured data shows a very high agree-
ment with the calculated horn effect over an impedance
plane. Hence, the extension of the BEM approach to
half spaces with finite impedance boundary conditions
is successfully validated by means of this scattering
problem.
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