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In the present paper, the scattered and transmitted sound fields caused by the presence of 
simple structures like a spherical shell filled with fluid and a baffled plate are determined. For 
the spherical shell, two solutions are presented and compared for certain shell configurations. 
The first method solves the differential equations for a thin spherical shell, whereas the sec-
ond approach considers the shell as an elastic waveguide with a finite thickness. These results 
are also compared with a boundary element calculation. For the baffled plate, the sound field 
at both sides is obtained through a Rayleigh integral. This integral is obtained from a direct 
boundary integral formulation, where the normal derivative of the Green's function vanishes 
due to the presence of the infinite baffle. The normal velocity of the plate is modelled as a 
sum of vibration modes of the plate obtained by a finite element simulation.  

1. Introduction 
The scattering of sound waves is used for detection/evaluation/classification of submerged ob-

jects in underwater acoustics. The transmission of sound through plate-like structures is determined 
in building acoustics to characterize sound insulation between adjacent rooms. Both situations in-
volve a fluid-structure interaction, i.e. sound radiation and structure oscillations are coupled. When 
dealing with complex structures, which is mostly the case for practical applications, numerical 
methods have to be used. In underwater acoustics, the scattered waves can be determined using the 
Boundary Element Method since the medium is unbounded. For the sound transmission in build-
ings, the BEM is also very useful, although for the interior problem other methods like the FEM or 
modal decomposition are also available. For the case of a baffled plate, which will be handled here, 
the Helmholtz Integral Equation which is the basis of the BEM, turns into the Rayleigh integral.  

Submerged objects can have different structures, here they are assumed to be made of an elas-
tic shell filled with fluid. The plates are considered to have a small thickness compared to its length 
and width, therefore only the displacement normal to its surface is considered. In the present work, 
the approach for the numerical solution of both type of problems is presented. For the validation of 
the procedure, two simple structures are considered, a spherical shell for the scattering problem and 
a baffled plate for the transmission problem. 

2. Fluid-Structure Coupling 
We consider a linear elastic structure that separates two volumes (1 and 2) filled with fluid. 

The structure can be induced to oscillate by an external force F. At the same time, the oscillation of 
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the structure affects the load that is acting on the surface. In this coupled problem, the unknowns are 
the displacement of the structure u and the pressures at both of its sides, p1 and p2  

 
Figure 1. Illustration of the problems; a) scattering; b) transmission. 

The equations of motion of the structure subject to the boundary conditions are obtained using 
a variational formulation and the extremalization of the Hamiltonian of the structure.  
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where T is the kinetic energy, V and Vb are the potential energies of the structure and due to the 
boundary conditions respectively and W is the work associated to the external forces and loads. 

For the submerged object, the radiated sound pressures satisfy the Helmholtz Integral Equa-
tions (HIE): 

2 in      

1 in

2

1

22
2

2
2

2
222

11
2

1
1

1
111

∫

∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

=

S

S
n

S

inc
S

S
n

S

dSgu
n
gppC

pdSgu
n
gppC

ωρ

ωρ
                                   (2.a) 

with      
⎪⎩

⎪
⎨

⎧
=

⎪⎩

⎪
⎨

⎧
=

−
=

−
=

−−−−

2

2

2

2

1

1

1

121

 outside0
 on0.5

 inside1
  ,  

 inside0
 on0.5

 outside1
  ,  

4
  ,  

4

21

S
S

S
C

S
S

S
C

yx
eg

yx
eg

yxjkyxjk

rrrr

rrrr

ππ
. 

For the transmission through the baffled plate, the HIE turns into a Rayleigh integral: 
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where pref is the sound wave reflected at the baffle without the plate and 
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The solution of the coupled problem of Eqs. (1) and (2.a) or (2.b) is obtained at a finite num-
ber of points (nodes) inside the structure and at its surface. The discretized form of Eq. (1), written 
in matrix form is given by: 
 ( ) mFFuMK +=− 2ω . (3) 
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where M is the mass matrix, K is the stiffness matrix, F and Fm are the vectors of external forces 
and loads respectively and u is the vector of structural nodal displacement. 

Discretizing Eqs. (2.a) and (2.b) at the surfaces S1 and S2, we obtain the matrix expressions: 
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Combining Eqs. (3) and (4) and assuming that there are no external forces (F=0), the coupled 
system of equations for u, and  can be obtained: Sp1
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where A1 and A2 are matrices containing the surface associated to each node at the surface of the 
structure and R1 and R2 are matrices that have zeros for nodes that are not located on the surface and 
values different from zero for nodes that are located on the surface. 

If the elastic structure is very thin, one can use shell elements with the appropriate thickness 
instead of volume elements. In that case, S1=S2, A1=A2 and R1=R2 and assuming there are no internal 
substructures, all nodes will be at the surface.  

The system of Eqs. (5) can be reduced to a system of equations for u only: 
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and the other variables are obtained directly from u using the relations: 
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The system of equations in (6) can be very large if the discretization of the object is very fine, 
but it can be reduced if the displacement vector is expressed as a linear combination of structural 
modes in vacuum: 
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The coefficients αi are called participation factors. Normally, they decrease with the order of the 
modes, so the number of modes needed to achieve results within a certain error margin should be 
much lower that the number of nodes. Assuming there is no damping in the structure, the modes are 
orthogonal and satisfy the equation 
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The matrix to be inverted in Eq. (10) is a n×n square matrix with n<N, n=number of modes, 
N=number of nodes. Because of the orthogonality of the eigenvectors and the symmetry of K and 
M, the matrices K~  and M~  are diagonal. 

3. Test examples 
The procedure described in section 2 was tested using two benchmarks problems, the scatter-

ing of a plane wave by a spherical thin shell and the sound transmission through a baffled simply 
supported rectangular plate. 

3.1 Scattering by a thin spherical shell 
The scattering of a thin spherical shell can be obtained analytically using two different ap-

proaches. The first one is to solve the equation of motion for an elastic waveguide with a finite 
thickness and the second one is to use the Kirchhoff-Love theory for a spherical shell.  

3.1.1 Elastic Theory 
A spherical shell of radii a and b (b>a) is considered. The mechanical vibration of the elastic 

structure is governed by the equation 
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where ( ) ρμλα /2+= and ρμβ /= are the P- and S-wave velocities, λ and μ are the Lamé 

elastic parameters and f
r

f is the vector of external forces. The stress tensor ijτ is expressed in terms 
of the strain tensor ijε : ( )ixjjiijijij uxuεuij ∂∂−∂∂=+⋅∇= //5.0     ,     2μεδλτ r .                                   

If external forces and torsional vibrations are not considered and the displacement vector is 
written as ( )( )SrFu rr

×∇×∇+∇= , two uncoupled wave equations for the scalars F and S can be 
obtained. These scalars can be then written as 
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The scattered and transmitted fields can also be expanded in spherical functions 
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The coefficients An, Bn, Cn, Dn, En and Tn can be determined using the boundary conditions, 
which require continuity of the normal displacement and the stress acting on the shell surface. 

3.1.2 Kirchhoff-Love Theory 
A spherical shell of radius a is considered. If the shell is very thin, i.e. its thickness h is small 

compared with its other dimensions and compared with its principal radius of curvature, following 
assumptions are made: a) straight lines that are normal to the middle surface prior to deformation 
remain straight and normal to the middle surface during deformation, and experience no change in 
length; b) the direct stress acting in the direction normal to the shell middle surface is negligible. 

If no torsional vibrations are considered ( 0=φu ) and the external loads act normal to the sur-
face, the displacement of the middle surface is given by the following set of equations [1] 
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where E is the Young's modulus and v the Poisson's ratio. 
The displacement components  and  can be expanded in spherical harmonics ru θu
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and the scattered and transmitted field are again given by (14). Inserting (16) into (15) together with 
the boundary conditions of continuity of normal displacement, the coefficients Wn, Vn, Dn and Gn 
can be determined. 

 
Figure 2. Scattered sound by a spherical shell. Comparison between elastic and shell theory for different 

thickness. 

A comparison between both analytical approaches is shown in Fig. 2. The scattered sound 
pressure from an aluminium shell with 0.5 m radius is calculated in a circle of radius 10 m. The 
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thicknesses was varied from 0.1 to 0.001 at a fixed frequency of 1000 Hz. Both approaches provide 
the same results for h<0.01, about R/h>50. The differences increase for the thicker shells. 

The numerical calculation in the present work considers only the shell theory. A simulation 
using the elastic theory was made and presented in [2]. The sphere model with radius a=0.475 m 
and thickness h=0.05 m has 640 triangular shell elements. The exterior medium is water and the 
interior fluid is air.  

The modal participation is obtained solving (10), the shell displacement is determined with 
(8) and the sound pressure at the shell surface using (7.a). The scattered sound pressure is computed 
solving the surface integral in (2.a). A comparison between analytical and numerical results are pre-
sented in Fig. (3). A very good agreement between both results is found for different values of h. 

 
Figure 3. Scattered sound by a spherical shell. Comparison between analytical and numerical results. 

 

3.1.3 Indirect BEM approach 
For thin structures and for open structures, the indirect BEM approach is a more flexible for-

mulation. If we consider that the same fluid is present at both sides of the structure and that the 
structure is thin enough to assume that the displacement of the body at its front and back sides is the 
same, the addition of both equations (2.a) yields to an expression of the sound pressure at every 
point not lying on the surface 
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Here, the unknown variable is the pressure jump and not the pressure. To find the pressure 
jump, we perform the normal derivative of both equations (2.a) and add both equations to obtain 
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The integral in (18) is hypersingular but since we work with constant elements, this integral is 
handled using the method conceived by Osetrov and Ochmann [3]. Following this procedure, Eq. 
(18) is written as 
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with yxG rr
−= /1 . Combining the matrix form of Eq. (19) with Eq. (3) and considering F=0, 

, we find the system of equations to be solved Sm pAF δ−=
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where A is the matrix of the elements surface, R is the matrix identifying the nodes on the surface 
and L is the matrix corresponding to the surface integrals in (19). 

A comparison of the results from the direct and indirect formulations with the analytical solu-
tion is shown in Fig. 4 for h=0.05 m and air outside and inside the shell. The agreement is very 
good for both approaches. At 1000 Hz, the error from the indirect approach is bigger than the error 
of the direct approach because the discretization has a stronger influence in the indirect method 
since the system matrix is built from the normal derivative of the HIE.  

 
Figure 4. Scattered sound by a spherical shell. Comparison between analytical and numerical results. 

3.2 Transmission through a baffled plate  
The transmission efficiency (τ) of a baffled plate is given by the expression 
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where nn ujv ω=  is the normal velocity. The transmission loss (TL) is defined as τ10log10−=TL . 
The normal displacement of the plate can be obtained using Eq. (8) after solving Eq. (10). The load 
of the medium is contained in the matrices Q1 and Q2 in Eq. (10). When the media are very light 
compared to the plate, their effect can be neglected and the displacement will depend only on the 
incident wave (blocked pressure approximation).  
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The normal displacement depends strongly on the boundary conditions. A configuration 
which has a simple solution is the case of an isotropic simply supported plate of sides a and b. The 
normal displacement is governed by [1] 

( )23
21

222 112/    ,    νωρ −=−=−∇∇ EhDppuhuD SS                            (22) 
and the eigenvectors and eigenfrequencies are given by 

( ) ( bmannm /sin/sin )ππφ =    ,    ( ) ( )( ) hDbmannm ρπω /// 222 +=                  (23) 

The effect of the load of the medium in the averaged displacement of the plate and in the TL 
is shown in Fig. 5. Two different plates with the same dimensions were considered for the calcula-
tions. The first plate has h=0.001 and elastic properties ρ=7850 kg/m3 and E=200GPa, the second 
one is thicker h=0.005 m but lighter with parameters ρ=200 kg/m3 , E=6.4GPa. The results show 
that only for the second case, the load of the medium affects the oscillation of the plate. 

 
Figure 5. Comparison of displacement and TL, with and without load. 

4. Summary 
In the present work, a method to compute numerically the sound scattering and sound trans-

mission considering fluid structure coupling (FSC) was presented. To determine the radiated sound, 
direct and indirect BEM approaches were considered. The method was tested using two simple con-
figurations that serve as benchmark problems for the validation of any FSC solver. 
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