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In this paper, different approaches for calculating the sound transmission through thin finite 
plates under arbitrary (also dissipative) boundary conditions are investigated. First, the vibra-
tions of the plate are determined by using a basis of polynomial functions. Second, a purely 
numerically based method, i.e. a coupled Finite-Element-Method (FEM) – Boundary-
Element-Method (BEM) is applied. Finally, an iterative method which starts with the 
blocked- pressure approximation and takes into account the fluid load incrementally is devel-
oped. Results obtained with these methods are presented and discussed.  

1. Introduction 
In a joint DFG project, different approaches to calculate the sound transmission from plate-

like structures are investigated. The entire numerical task consists of a fully coupled, fluid-
structure-interaction problem. The computation of the exciting sound field, the plate motion and the 
radiated sound are subtasks that can be solved in different ways, for example, with analytical deri-
vations, discretization methods (FEM or BEM), and modal or polynomial basis functions for the 
plate motion. 

When these methods are applied to the coupled problem, a system of linear equations is ob-
tained. This system is solved by a direct method like for example the Gaussian elimination method. 
In the middle and high frequency range, where the discretization must be fine enough to ensure at 
least six finite elements per wave length, a direct solution may be very time consuming. Therefore, 
suitable iterative techniques represent an interesting alternative. One possible iterative scheme im-
proves the blocked-pressure approximation with successive corrections until convergence is ob-
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tained. In every step of the procedure, structure and fluids are treated separately and then the results 
are combined to go on to the next step. Unfortunately, it may happen that this approach will not 
converge for plates with weak damping. Therefore, methods for overcoming such instabilities and 
guaranteeing convergence need to be implemented. 

2. Equation of motion of the plate 
When sound waves hit a plate, it vibrates and in turn this vibration produces sound. The nor-

mal displacement of the plate u is responsible for the transmission of sound from one side to the 
other.  

 
Figure 1. Sound transmission through a baffled plate. 

 
To calculate u, a variational principle can be applied. Within this approach, the plate vibra-

tions correspond to minimum values of the action functional J defined as 
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where T and V are the kinetic and potential energies and W is the work of the external forces. For 
the plate, the model of Kirchhoff will be assumed. T, V and W are written as 
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where Ω and S are the volume and surface of the plate and σij and εij are the elements of the stress 
and strain tensors respectively. 

If u is developed into a modal or polynomial basis φn and the infinite series is truncated after  
N terms 
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the following equations for the coefficients an can be deduced [1] 

( ) qnqnqn FaMK =− 2ω   ,   q, n=1, 2,..., N                                  (4) 

Kqn is the stiffness matrix, Mqn the mass matrix, and  the vector of external forces. qF

2.1 Blocked-pressure approximation 
The vector of external forces has two contributions, one part is coming from the sound 

sources, , and other from the fluid load due to the sound radiation, ,  . s
qF r

qF r
q

s
qq FFF +=

When the density of the fluid surrounding the plate is much smaller than the density of the 
plate, the term is very small compared to  and can be neglected. Then, the vector of external 
forces is written as 

r
qF s

qF



17th International Congress on Sound and Vibration (ICSV17), Cairo, Egypt, 18-22 July 2010 
 

 
3 

∫==
S

q
bpbp

qq dSpPF φ    ,      (blocked pressure)                  (5) inc
bp pp 2=

where  denotes the pressure of the incident wave. The coefficients an in the series (3) will be 
specified only by the exciting sound wave. 

incp

Under this assumption, the vibrations of the plate and the sound radiation are only coupled 
"one way" and displacement and sound radiation can be computed in two separate steps. The coef-
ficients an are determined numerically solving Eq. (4), and u is computed using Eq. (3). The trans-
mitted sound pressure is finally obtained by solving the Rayleigh integral 
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2.2 Inclusion of fluid load 
The contribution of the fluid load to the vector of external forces can be expressed as 
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where is the difference of the pressures at the the two surfaces of the plate due to the 
sound radiation. Inserting Eq. (7) in Eq. (4), the equation for the displacement vector is obtained 
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The sound transmitted to the other side of the plate is given again by (6) . 

3. Solution of the equation of motion 
We present three methods to compute the displacement of the plate. The first two methods 

solve Eq. (8) using different basis functions. We refer to these methods as direct approaches, since 
the solution is obtained in one step. The third method finds the solution by applying an iterative 
scheme. Starting with certain approximate values, displacement and sound pressure are improved in 
successive steps until convergence is reached. We refer to it as the iterative method. 

3.1 Semi-analytical solution (Woodcock 1995 [1]) 
If a polynomial basis of the form )()(),( yxyx mnnm ψϕφ = , with functions ( )nn axx /2)( =ϕ  

and ( m
m byy /2)( = )ψ  is chosen [1], the displacement is written as 

∑=
nm

nmnmau φ    , n,m=0,1,.... 

Note that now two indices are used to specify the order of the function. The elements of the 
matrices in Eq. (8) contain surface integrals of products of the polynomials and their first and sec-
ond derivatives. The elements of mass and stiffness matrix can be calculated analytically in closed 
form, but the elements of the radiation impedances and forces can be expressed only as infinite se-
ries.  

The elements of the mass matrix are given by 
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The elements of the stiffness matrix can be defined as the sum of six contributions 
. Here, only the explicit form of is 

shown, the other ones can be found in [1] 
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Arbitrary boundary conditions can be taken into account by adding an additional term to the 
stiffness matrix, , which is defined as )(bc

pqnmK
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K and C are translational and rotational stiffness, and Γ is the contour of the plate. Dissipative 
boundary conditions can be also considered, if both parameters are defined as complex quantities in 
the form ( )KjKK η−= 1  and ( )CjCC η−= 1 . 

The radiation impedance can be developed into an infinite series )1(
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where Ip and Iq can be computed using recurrence formulas. The formula for Ip is  
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nix is the x-component of the direction vector of the incident wave. The expression for Iq is similar. 

3.2 Numerical solution (FEM and BEM)  
The displacement of the plate is computed by discretizing the plate and the basic equations. 

The meshes for FEM and BEM are not necessarily equal. In many cases, the structural wavelength 
is shorter than the acoustic wavelength and a finer discretization of the plate is needed. When this 
happens, a matching of both meshes has to be performed. This task can make the calculations more 
complicated. In this study, only one mesh for both methods has been used. 

Combining a FE formulation for the motion of the plate and a BE formulation for the sound 
radiation, an equation for the displacement u, similar to Eq. (8), can be deduced [2] 

( )( ) bpApuZZjMK =++− 21
2 ωω ,                                   (9) 
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where K is the stiffness matrix, M the mass matrix, Z1 and Z2 are the radiation impedances, A is the 
matrix of the surfaces of the elements, and pbp the vector of the blocked pressure. If N is the number 
of elements, the size of the matrices is N×N. 

If the vector u is expanded in n eigenmodes (n<N), du Φ= , a smaller system of equations is 
solved. Usually, the modes in vacuum (dry modes) are considered and they are normalized with 
respect to the mass matrix. In the new system, the unknowns are the amplitudes of the eigenmodes 
(also called participation factors). The matrix equation to be solved is given by 

( )( ) bpTT
R ApdZZjI Φ=Φ+Φ+− 21

22 ωωω .                                  (10) 
2
Rω  is the diagonal matrix diag( ) and Φ is the N×n matrix of the eigenvectors.  22

2
2
1 ,...,, Nωωω

3.3 Iterative method 
Starting from the blocked-pressure approximation, the displacement of the plate and the pres-

sure difference at the surfaces of the plate are successively improved through combination from 
separate calculations of structure vibration and sound radiation until a sufficiently accurate value is 
achieved. 

The movement of the plate due to the pressure excitation is given by 

( )EMp ppLv Δ+Δ=  .                                                     (11) 

v is the normal velocity of the plate, Lp the operator of the motion of the plate in vacuum, ΔpM the 
pressure difference due to the motion of the plate, and ΔpE the pressure difference generated by the 
presence of sound sources (blocked pressure).  

On the other hand, the pressure difference produced by the vibration of the plate is given by  

( )vLLp FFM
)2()1( +−=Δ .                                                     (12) 
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regions. 
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Based on the Eqs. (11) and (12), an iterative procedure can be constructed. The n-th double 
step of the procedure reads 
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The starting value in (13) leads to the blocked pressure  and to the blocked-
pressure approximation . 
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4. Results 
A simply supported steel plate is studied. The dimensions of the plate in meters are 

0.455×0.376×0.001 and at both sides air is assumed. The plate is excited by a plane wave which has 
a fixed incident angle of 45° and amplitude 1 Pa. The highest frequency considered is 800 Hz.  

The eigenvalues and eigenmodes of the plate can be analytically calculated  
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The insulating properties of the baffled plate are quantified by the transmission loss R 
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The incident sound power is given by the expression 
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and the transmitted sound power is computed using the formulas 
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4.1 Comparison of the direct approaches 
The eigenfrequencies and the curves of transmission loss were calculated and shown in Fig. 2. 

 
Figure 2. Results of both direct approaches 

 
The eigenfrequencies obtained by the two direct methods agree very well with the analytical 

values up to about 400 Hz. The differences between the analytical and the numerical methods are 
relatively small. The deviations between the analytical and the polynomial-basis-method grow with 
increasing frequencies because a high accuracy is needed by computing the elements of the mass 
and stiffness matrices. The curves of R are practically the same up to 200 Hz. Beyond that fre-
quency,  small differences appear.  

4.2 Convergence of the iterative method 
The iterative method was implemented and applied to the steel plate. After only a few itera-

tions, the values of the transmission loss near the eigenfrequencies diverged while the values for 
other frequencies converged. Fig. 3 illustrates the curves of R for the first 3 iterations. Only a nar-
row frequency range is captured to see the regions near two eigenfrequencies. 

 The lack of convergence is originated from the fact that the operator Lp becomes singular 
near the eigenfrequencies, if small damping or no damping at all is considered. 

To overcome this problem, a technique based on the splitting method with an auxiliary matrix 
was investigated. Combining (11) and (12) the following equation is written 



17th International Congress on Sound and Vibration (ICSV17), Cairo, Egypt, 18-22 July 2010 
 

 
7 
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with  and . It should be noted that can be singular but not . Adding an 
auxiliary matrix to both sides of  Eq. (18), a new iteration procedure can be built 
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Figure 3. Transmission loss obtained with the iterative method 

 
Now, a proper auxiliary matrix that assures convergence has to be found. Since the inverse of 

 has to be performed, it is convenient to choose ZA that makes ( As ZZ + ) ( )As ZZ + diagonal in order 
to simplify the computation of the inverse. The only task remaining is to find the diagonal entries. 

For the diagonal elements, the radiation impedance of the infinite panel multiplied by the sur-
face area of the panel was used. With this selection, it was possible to reduce the spectral radius of 

 to just below unity, so that the convergence was ensured. However, the rate of conver-
gence was still too low. An alternative technique of improving iteration schemes is tested in [3]. 
( As ZZ + )

5. Summary 
In this paper, three methods to compute the transmission loss of thin baffled plates are pre-

sented. The first two are direct methods, where the first is semi-analytical and the second purely 
numerical. They provide similar results for the transmission loss in the frequency range studied. The 
third method involves an iterative procedure, but it does not converge near the eigenfrequencies of 
the plate. A modification of the scheme with the introduction of an auxiliary matrix leads to an im-
proved convergence behaviour, but the procedure still needs some refinement. 
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