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Summary 
The transmission loss of corrugated plates is computed by a coupled FEM-BEM approach. The 
normal vibrations of the plate are calculated with a FEM simulation. They are used as basis for the 
modal expansion of the displacement of the plate. The participation factors are determined solving 
the equation of motion of the plate including the fluid load. The load acting on the plate due to the 
sound pressure is determined using the BEM. The results of the model are compared to the results 
obtained by an approximated approach which treats the corrugated plate as a flat orthotropic plate 
with equivalent bending stiffness. The insulation of the corrugated plate is also compared with the 
insulation of a flat isotropic plate with the same thickness that covers the same area. 

PACS no. 43.55.Ti, 43.20.Rz 
 
1. Introduction 

Corrugated plates have a wide range of 
applications in various branches of engineering 
due to their larger bending stiffness, e.g. in roof 
structures or in gas turbine enclosures. Such type 
of plates can be treated as orthotropic since the 
stiffness in the direction along the raised profile is 
much higher than in the perpendicular direction. 
Equivalent stiffness in each direction can be 
deduced from the geometry of the plate and the 
properties of the material. The sound radiation of 
the plate can be computed with a simple Rayleigh 
integral. Under those assumptions, formulas to 
predict the natural vibrations and the sound 
reduction from flat and profiled plates have been 
deduced in the past. In the present work, a 
numerical model for determining the transmission 
loss of corrugated plates which considers the 
geometry of the plate and calculates more 
accurately the sound radiation is developed. The 
natural vibrations of the plate in vacuum are 
previously determined with a FEM simulation and 
transferred to a BEM calculation of the sound 
radiation.  

2. “Planification” approach 

Corrugated plates can be modelled as orthotropic 
flat plates. Assuming that the bending wavelength 
is much larger than the “period” of the profile, the 
bending stiffness in the two orthogonal directions 
can be approximated in terms of the geometry and 
material properties of the plate.  

 

Figure 1. Corrugated plate profile, figure taken from [1] 

With the parameters illustrated in Fig. 1, the 
bending stiffness across the profile can be written 
as [1] 
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The stiffness along the profile can be calculated 
with the expression 
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and the stiffness Bxy is given by 
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The formula for the eigenfrequencies of a simply 
supported orthotropic plate reads  
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where a and b are the dimensions of the plate. The 
eigenfrequencies of a simply supported corrugated 
plate can be obtained from (4) using the equivalent 
bending stiffness given in (1)-(3). However, the 
assumption of a much larger bending wavelength 
does not hold for high frequencies. Thus, it is 
expected that (4) only gives reasonable values for 
the lower eigenfrequencies. 

3. Accurate acoustic model 

The following model does not consider any 
approximation and takes into account the form of 
the plate for the calculation of the sound radiation. 
We study a thin plate with trapezoid profile 
(cladding) but the model can handle any arbitrary 
geometry. The plate is embedded in an infinite 
baffle. A plane wave with incident angle θ excites 
the plate and the vibration of the plate produces 
sound at both sides of the plate. 

The displacement of the plate u satisfies the 
equation of motion 

( ) FuMK =− 2ω       ,             (5) 

where K and M are the stiffness and mass matrices, 
and F is the vector of the external forces. 

 
Figure 2. Corrugated plate in an infinite baffle. 

In case of airborne sound transmission, F is 
proportional to the pressure difference above and 
below the plate. This difference can be calculated 
using integral equations. To formulate the proper 
equations, the space is divided in four subdomains 
as sketched in Fig. 3. It is important to distinguish 
the regions above and below the plane containing 
the baffle. The baffle provides a real surface to 
divide the space, but it is necessary to define a 

fictitious surface St to account for the part of the 
plane occupied by the plate. Hence, above the 
plane the subdomains Ω1 and Ω4 are defined while 
the subdomains Ω2 and Ω3 are defined below the 
plane. 

 
Figure 3. Description of the acoustic model; (a) 
subdomains, boundaries and normal vectors; (b) real 
and mirror image of source points and normal vectors. 

In each subdomain, the sound pressure is given by 
an integral equation as follows [2] 
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where gh and ∂gh/∂ny correspond to the Green’s 
function for the halfspace and its normal derivative 
with respect to the vector y: 
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and ys and ns denote the mirror image of the source 
point and the normal vector (see Fig. 3b). 

Table I: Coefficients Ci 

 C1 C2 C3 C4 

Su 0.5 0 0 0.5 

Sd 0 0.5 0.5 0 

St 1a 1b 1c 1d 

a St not in Ω4 (otherwise 0) , b St not in Ω3 (otherwise 0) 
c St in Ω3 (otherwise 0)       , d St in Ω4 (otherwise 0) 

To obtain the system of equations to be solved, 
equations (5) and (6.a)-(6.d) need to be discretized. 
There are six unknown variables p1, p2, p3, p4, 
∂p/∂n on St and u on the plate, therefore, six 
equations are needed. The first equation can be 
obtained requiring continuity of the pressure on St.  

(6.a)+(6.d) = (6.b)+(6.c)   on St    .       (9) 

The second and third equations are obtained 
discretizing (6.b) and (6.c) on Su and Sd 
respectively. Since the plate is very thin, the 
normal velocity at both sides of the plate is the 
same. Hence, the forth and fifth equations are 
obtained by taking the derivative of Eqs. (6) 
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The force acting on the plate is due to the pressure 
difference above and below the plate 

∫∆=
S

ydSnpF r      .                     (11) 

The pressure difference ∆p is p1−p4 on Su and 
p3−p2 on Sd. The sixth equation is obtained 
discretizing (5) and replacing (11) on the right 
hand side of (5). By combining all equations, a 
single equation for the displacement of the plate 
can be derived 

buMDjK =−+ )( 2ωω     .            (12) 

where jωD is the load of the fluid on the plate and 
b is the excitation due to the incident plane wave.  

To reduce the size of the matrix to be inverted, a 
modal expansion of the displacement u is 
introduced 

∑=
n

nndu φ   ,                         (13) 

where φn is the n-th eigenmode of the plate in 
vacuum. 

4. Numerical example 

The developed numerical model was applied to a 
corrugated steel plate with thickness h=3 mm. The 
dimensions of the profile are shown in Fig. 4. The 
plate had eight repetitions of the profile, i.e. a total 
width of 2 m and each profile has a length of 3 m. 

 
Figure 4. Dimensions of the profile. 

For the numerical simulation, a mesh with 3510 
nodes, 2968 elements and a maximum edge length 
of 0.057 m was generated. 

 
Figure 5. Mesh for the FEM and BEM calculations. 
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Two different boundary conditions were 
investigated: simply supported and clamped.  

The eigenfrequencies and vibration modes of the 
profiled plate were obtained with a FEM 
simulation. In Table II, the first five simulated 
eigenfrequencies of the profiled plate are 
compared with the values obtained with formula 
(4). Only the first two values obtained with the 
approximated approach are near the numerical 
values. The displacement of the plate by these 
modes is illustrated in Fig. 6. From the third mode 
on, the deviations grow with increasing frequency. 
For the flat plate instead, the agreement between 
the FEM simulation and the analytical solution is 
very good (see Table III). 

 
Table II: Eigenfrequencies of the profiled plate 

Mode (1,1) (2,1) (3,1) (4,1) (5,1) 

numeric 40.4 43.3 49.1 58.6 72.1 

formula 35.2 53.8 75.9 100.1 126.1 

 

 

 

Figure 6. First (top) and second (bottom) eigenmode of 
the simply supported profiled plate. 

Table III: Eigenfrequencies of the flat plate 

Mode (1,1) (1,2) (2,1) (1,3) (2,2) 

formula 2.6 5.1 8.2 9.2 10.6 

numeric 2.7 5.1 8.2 9.2 10.6 

 

Following the planification approach, equivalent 
bending stiffness can be derived for the corrugated 
plate. Using (1) and (2) we obtain Bx=425.8 N⋅m, 
and By=541380 N⋅m. According to these values, 
two coincidence frequencies at fcy=123 Hz and 
fcx=4400 Hz, which cover an important part of the 
audio range, are expected. In this region, the 
insulating behaviour of the plate is not optimum 
[3].  

The transmission loss of the plate is defined as 









−=

inc

out

W
WR 10log10        ,             (14) 

where Wout is the radiated power and Winc the 
incident power. The expressions of the power are 
given by 
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nw is the unit vector in the direction of the plane 
wave and n the normal vector of the plate.  

The transmission loss of the corrugated plate is 
presented in Figs. 7 and 8. In all cases, a single 
plane wave with incident angle θ=30° is 
considered. The transmission loss due to a diffuse 
incident field can be calculated integrating over 
different incident angles. First, we compare R 
obtained with the approximated approach and with 
the numerical model (Fig. 7). We observe that the 
approximated approach provides a higher 
transmission loss in almost all 1/3 octave bands. 
The difference lies between 2 and 4 dB in average. 

  

 
Figure 7. Comparison of the curves of transmission loss 
calculated with two models. 
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Next, we compare the transmission loss of the 
profiled plate with the transmission loss of the flat 
plate for the two cases: simply supported and 
clamped. In both cases, the flat plate has a better 
insulation as the profiled plate. The transmission 
loss of the flat plate increases approximately 6  
dB/octave, while the transmission loss of the 
corrugated plate also increases but shows some 
oscillations.  

  
 

 
Figure 8. Transmission loss of corrugated and flat plates 
for simply supported (top) and clamped (bottom) 
boundary conditions. 

5. Conclusions 

The results presented in this article show that with 
the “planification” of the corrugated plate, only the 
first eigenfrequencies of the plate are calculated 
with reasonable accuracy and the values of the 
transmission loss tend to be overestimated. With 
the numerical model, a more accurate 
determination of the insulation of corrugated plates 
is possible.  

The higher stiffness of corrugated plates has its 
downside on the lower transmission loss compared 
to flat plates. It is possible to improve the 

insulation of corrugated plates inserting absorption 
material [3]. This feature will be implemented in a 
future work. 
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