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Abstract: The Multi-Level Fast Multipole Method (MLFMM) allows the computation of acoustical 
problems based on the Boundary Element Method (BEM) where the discretized models of the 
corresponding structures may consist of a huge number of elements. The required calculation time 
and the memory requirements are much less when compared with conventional methods because the 
algorithm uses a level-based composition of the potentials from different point sources to acoustic 
multipoles, which highly accelerates the computation of the matrix-vector-products required for 
iterative solvers. A multi-level single-order variation of the algorithm developed during a previous 
research project was extended to a multi-level adaptive-order version, which was analyzed and 
optimized with respect to quality, performance and parallelization issues. The insights gained will 
be presented using different test cases and the results achieved will be compared with analytical 
solutions and results based on conventional BEM- and FEM-based calculations. 
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1. Introduction 

The Multi-Level Fast Multipole Method (MLFMM) describes a fast algorithm to accelerate the 
matrix-vector product which is required for the iterative solution of BEM-based calculations without ever 
assembling the complete matrix. The method is suited for big problems where the interactions between huge 
numbers of source ( ) and destination points ( ) must be considered. 
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Figure 1 - direct interactions (conventional BEM) 
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Figure 2 - cluster based interactions (MLFMM) 

The decrease of the number of interactions when using the multi-level version of the algorithm can be 
identified by comparing Figure 1 and Figure 2.  
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The effects of all individual sources  within a source cluster  of radius  are summarized in a 
multipole source at . Their potential is transformed to a remote target cluster  centered at  and 
distributed to the target points  (Figure 3). 

 

 

Figure 3 - Decomposition of the path between source and destination points of two clusters 
(based on [Sak4], p. 347, Fig. 12.9) 

For each part of the path between source and destination points a corresponding transfer function 
( , and ) is used as shown in Figure 4, the full details and formulations may be found in [Sak4]. 

 
Figure 4 - path dependent transfer functions ,  and  

One if the most critical functions here is the translation operator  which “transfers” the multipole 
potential from a source cluster (the far field signature ) to the center of a target cluster with the near field 
signature . This operator can be represented as a truncated series (Eq. (1)) with the maximum order set to 

 (“multipole order”): 

  (1) 

with  distance vector between cluster centers 
  set of vectors on the unit sphere 
  wave number 
  Hankel function 
  Legendre polynomials 
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There are many articles in literature dealing with the determination of the parameters used [Sak6, Yas7] 
and the specialties of the Hankel function  and Legendre polynoms , but this would exceed the 
framework of this paper. 

First we implemented a fixed-order version (Vs. 1.x) of the MLFMM algorithm [Bur1, Bur2] based on 
[Sak4] to check the limits with regard to element numbers and frequency. Then the algorithm was extended 
to an adaptive-level version (Vs. 2.x) using [Che5, Sak6, Che8] where the multipole order is defined as a 
function  and calculated at runtime. In addition, other optimizations to reduce the solution time 
were made, especially within the precalculation of geometry-based values. 

2. Examples and results 

2.1 Rigid sphere 
 
To test the hardware dependent limits of the implemented MLFMM algorithm, a simple rigid sphere (r = 0.5 
m, Figure 5) placed in water and hit by a plane wave using a frequency of 1 kHz was discretized with 
resulting element numbers between 1.000 and 5 millions. 

Rigid sphere

 0.5 m 

Outer space (water) 

 
Figure 5 - rigid sphere 

The resulting solving times of the fixed-order MLFMM algorithm (Vs. 1.020 and 1.030) are shown in 
Table 1 and Figure 6, using a fixed multipole order of  = 6 and an iteration error of  ≤ 10-10. All 
calculations ran on a 12 core workstation with 48 GB RAM, thus limiting the number of unknowns to ≈ 
64,000 for a full matrix. 

Table 1 - solving times for the rigid sphere using different methods 

number of 
elements 

direct 
solver 

iterative solver 
(GMRES) 

iterative solver w/MLFMM, Vs. 1.030 

      

1k 0.20 s 0.16 s 12 0.64 s 13 0.093 s 0.045 s

2.5k 1.23 s 0.73 s 11 0.62 s 12 0.141 s 0.042 s

5k 7.44 s 3.03 s 11 2.06 s 13 0.328 s 0.142 s

10k 43.99 s 11.92 s 11 2.59 s 12 0.562 s 0.180 s

20k 310.75 s 52.56 s 11 7.63 s 13 1.202 s 0.530 s

50k 4,352.43 s 329.37 s 11 15.13 s 12 3.433 s 1.053 s

100k n.a. 11,710.95*s 11 31.87 s 12 5.975 s 2.331 s

200k n.a. 46,635.42*s 11 57.16 s 12 12.823 s 3.989 s

500k n.a. n.a.  138.26 s 12 28.205 s 9.869 s

1M n.a. n.a.  373.61 s 12 68.500 s 27.596 s

2M n.a. n.a.  561.82 s 12 114.973 s 40.332 s

5M n.a. n.a.  1,922.26 s 13 315.325 s 133.179 s

(a full matrix was rebuild for each matrix-vector product for results marked with an *) 
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Figure 6 - solving times for the rigid sphere using different methods 

These solution times were significantly reduced using the adaptive-order version (Table 2, Figure 7). 
 

Table 2 - solving times for the rigid sphere using different MLFMM versions 

elements iterative solver w/MLFMM, Vs. 2.030 multipole order 

      

1k 0.29 13 0.071 0.015 6 10

2.5k 0.42 13 0.120 0.024 6 10

5k 0.91 12 0.319 0.047 6 10

10k 1.33 12 0.560 0.067 6 10

20k 2.57 12 1.115 0.127 6 10

50k 7.38 12 4.037 0.291 6 10

100k 12.79 12 6.557 0.543 6 10

200k 25.88 12 13.630 1.083 6 10

500k 63.74 12 33.053 2.661 6 10

1M 134.61 12 71.360 5.491 6 10

2M 257.12 12 140.226 10.100 6 10

5M 856.73 12 532.744 25.987 6 10
 

 
Figure 7 - solving times for the rigid sphere using different MLFMM versions 
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2.2 Ellipsoid 
 
Another problem with the use of the fixed-order algorithm is that the solution due to the error in the 
matrix-vector products does not match the expected solution, although the iterative error was below a given 
value. To illustrate this problem, a rigid ellipsoid (2 × 4 × 1 m,  = 17,300) placed in water is hit by a 
plane wave with at an incident angle of 30° using a frequency of  = 2.5 kHz.  

Figure 8 shows the expected result using a conventional matrix-based BEM calculation. 

 

GMRES, matrix based 
: 70 

: ≤ 10-6 
: 37.47 s (Windows) 

 30.90 s (LINUX) 
 

direct solver, matrix based 
: 139.50 s (Windows) 

 131.39 s (LINUX) 

Figure 8 - Ellipsoid, , matrix-based 

This model is difficult for the MLFMM due to the different dimensions which require high multipole 
orders for correct results due to larger cluster distances. Figure 9 and Figure 10 show the results when using 
the fixed-order MLFMM algorithm. 

 

GMRES with MLFMM 
fixed multipole order 

: 67 
: ≤ 10-6 
: 6 

: 11.06 s (Windows) 
 8.67 s (LINUX) 

Big differences, not usable! 

Figure 9 - Ellipsoid, , MLFMM, fixed order of  = 6 

 

GMRES with MLFMM 
fixed multipole order 

: 71 
: ≤ 10-6 
: 15 

: 36.93 s (Windows) 
 27.56 s (LINUX) 

Some visible differences 

Figure 10 - Ellipsoid, , MLFMM, fixed order of  = 15 

The dependence of the quality on the multipole order  is clear. The adaptive-level version gives the 
best performance and quality (Figure 11). 

 

GMRES with MLFMM 
adaptive multipole order 

: 70 
: ≤ 10-6 
: 6…55 

: 33.45 s (Windows) 
 28.17 s (LINUX) 
Good agreement and performance! 

Figure 11 - Ellipsoid, , MLFMM, adaptive order  = 6 ... 55 
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3. Conclusions and future work 

The results presented show that the adaptive and performance-optimized version of the MFLMM algorithm 
gives better quality and faster results. 

At higher frequencies, the MLFMM shows significant qualitative differences, since the error in the 
method-based matrix-vector product forms a stronger effect. Further investigations to optimize the code for 
higher multipole expansion orders are necessary. 

Likewise, a suitable preconditioner should be used to achieve a better convergence of the iterative 
method. First results were published in [Och3], but these were not really successful, so further work is 
needed here.  
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