
 
 

1 

                                                      

Numerical simulation of the transmission loss of plates 
 

Rafael Piscoya1, Martin Ochmann, and Ralf Burgschweiger 

Beuth Hochschule für Technik Berlin, University of Applied Sciences, Faculty II, Research Group 

Computational Acoustics, Luxemburger Str. 10, 13353 Berlin, Germany 

 
Abstract: Numerical simulations for estimating the transmission loss of plates can be an 
important alternative to measurements when there is no access to transmission loss test facilities. 
Furthermore, parametric studies and design changes can be made easily and faster. This work 
presents a method to calculate the transmission loss of plates placed between a source and a 
receiver room using an iterative approach. The sound radiation due to the vibration of the plates is 
solved with a Boundary Element formulation while the motion of the plate is determined using a 
Rayleigh-Ritz formulation with the sound pressure as the exciting force. The starting point is the 
blocked-pressure approximation. The real pressure on the plate and its displacement are obtained 
after some iterations. If no damping in the plate is considered, poor or no convergence is expected 
at the resonant frequencies of the plate. This problem is avoided introducing some damping in the 
plate as well as in its fixation (boundary). With this approach, the use of existing techniques to 
accelerate the calculations that are already developed for the BEM, e.g. the Fast Multipole 
Method can be directly applied without needing to adapt them to this specific problem. 
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1. Introduction 
 
In acoustics, analytical descriptions are normally limited to simple systems. Therefore, measurements 
have been essential to determine the acoustic properties of complex systems which are usually required in 
practical applications. In many cases, measurements require especial environments e.g. anechoic, 
semi-anechoic or reverberant chambers with specific types of sound fields. The access to those especial 
facilities may be sometimes difficult or it may be expensive especially if the measurements have to be 
performed many times and for different configurations or prototypes in a design phase. 

With the continuous development of computers, the complexity of the simulated systems increases. 
Hence, in order to reduce costs, it is desirable to perform the design optimization by means of “virtual 
measurements” and leave the best prototypes or the ones with the most interesting properties for the real 
measurements. 

“Virtual transmission loss measurements” can be performed using deterministic methods like Finite 
Element (FEM) or Boundary Element (BEM) for low and middle frequencies. Due to the dimensions of 
transmission loss test facilities, the size of the discretized models can be huge for sufficient high 
frequencies. 

In the present work, the transmission loss of thin plates is calculated by simulating a measurement in a 
two room test facility using BEM i.e. only the surfaces need to be discretized. An iterative approach is 
considered which treats each room separately. Hence, two smaller systems need to be inverted instead of 
a large one. Besides, each room may be solved using a Fast Multipole BEM in order to extend the range of 
frequencies that can be investigated. 
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2. Problem description 
 
The transmission loss (R) of thin plates is calculated following the procedure described in DIN EN ISO 
10140-21. The plate is placed between source and receiving room (see Fig. 1) and R is defined as 
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(Eq. (2) in Ref. 1), where L1 is the mean sound pressure in source room in dB (average of pressure in field 
points 1), L2 mean sound pressure in receiving room in dB (average of pressure in field points 2), S the 
area of the opening where the element is mounted in m2 and A the equivalent absorbing area in the 
receiving room in m2. 

 

Figure 1 – Illustration of the test facility and the plate with elastic BCs 

 
Definition (1) requires that the sound fields are diffuse and that the sound in the receiving room is 
exclusively due to the sound coming through the test element. 

Elastic BCs can be considered by using translational and rotational springs along the boundaries with 
translational and rotational rigidities Kb and Cb respectively. The usual BCs are defined by the values 
Kb=0 and Cb=0 (free), Kb>>1 and Cb=0 (simply supported) and Kb>>1 and Cb>>1 (clamped).  

 

3. Motion of the plate 
 
Following the Rayleigh-Ritz variational formulation, the equation of motion of a plate is obtained by 
minimizing the functional: 
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where T is the kinetic energy, V the deformation energy of the plate and Vb the potential energy on the 
boundary. The expressions for each energy term are explicitly given in Ref. 2. The normal displacement of 

the plate is then expanded in a set of functions  ,   aun . Inserting this expansion in (2), 

the minimization leads to the equation of motion: 
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where K is the stiffness matrix, M the mass matrix, P the external force vector and a the vector of unknown 
coefficients. 
Here, we use the set of functions suggested by Filippi3, )()(),( yxyx    , a product of the 
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eigenfunctions of the free beam in x and y directions. Since  are not bounded on the edges, they are 

able to satisfy arbitrary boundary conditions. The free beam functions are given by 
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where () = (cosh- cos) / (sinh+ sin) and mLs are solutions of the transcendent equation       
coshmLs cosmLs = 1.  
 

4. Sound field in the rooms 
 
The sound pressure in the rooms is calculated using the BEM. The whole surface of the acoustic domain 
is subdivided in 4 surfaces, S1-S4 with normal vectors n1-n4 as shown in Fig. 2. S2 correspond to the 
plate and S3 to the rigid surface between the rooms. 

 
Figure 2 – Illustration of the test facility and the plate with elastic BCs 

 
The integral equations for the rooms are given by 
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where pq is the sound pressure due to the sound source q. 
In the present work, we are considering only thin structures. Therefore, pI/n = pII/n = 2un on 

S2. S1 and S4 are considered absorbing surfaces in order to decrease the amplitude of the room 
resonances. For those surfaces p/n = jp/Z holds. Discretization of Eqs. (5) and (6) on the boundary 
leads to two matrix equations 
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that provide the values of the sound pressure on the whole surface assuming is known. Here 
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5. Iteration scheme 
 
The motion of the plate and the sound field in the rooms are coupled through the force vector P in Eq. 
(3) 
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The iteration starts assuming that the plate does not vibrate  (blocked-pressure 

approximation). The sound pressures at both sides of the plate (  and ) are calculated using 

Eqs. (7) and (8). With those known pressures, the force vector can be determined using (9) and the next 
value of the displacement can be computed. The calculations are repeated until the difference between 
step n-1 and n is smaller than a certain value or the maximum number of iterations is reached. The n-th 
double step of the procedure can be written as 
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In Eq. (10),  is the pressure difference due to the motion of the plate and  is the pressure 

difference due to the sound sources.  is the operator describing the motion of the plate and  and 

are the operators regarding the excitation of the plate due to the sound pressure. 
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The iterative approach will be useful if the solution converges to the right solution with a small 
number of iterations. Introducing some damping to the plate and to its elastic boundary conditions as 
well as absorption in the walls of both rooms, the number of iterations should decrease.  

A combination of Eqs. (10) provides a single step iteration of the form 
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The iteration will converge if the spectral radius of the system matrix T is less than 1. The spectral 
radius is defined as max(i), where i are the eigenvalues of T.  
 

6. Numerical results 
 
For the evaluation of the iterative approach, the window test facility of the “Institut für Bauphysik – 
Fraunhofer Institut” was considered. The source and receiving rooms are rectangular rooms with 
dimensions 5.74m  3.75m  3.11m and 4.85m  3.75m  3.11m respectively. The opening is also 
rectangular with dimensions 1.25m  1.5m. For simplicity, the width of the wall dividing the two rooms 
was neglected. In the source room a small absorption was considered = 0.18 while in the receiving room 
a high absorption = 0.89 was used. The first ten resonances of the source and receiving rooms, assuming 
rigid walls, are listed in Table 1. Since absorption is considered, the true resonances will be slightly 
shifted.  

A point source was placed near one corner of the source room. Field points 1 are placed on a sphere of 
radius 0.75m centered approximately on the middle of the source room. Field points 2 were set 0.5m away 
from the plate (see Figure 1). 

The simulated plate is an aluminum plate with the dimensions of the opening and a thickness of 
0.004m. An elastic BC was assumed for the plate (Kb = 1107 and Cb = 7102). For aluminum, the values 
taken for Young’s modulus, density and Poisson’s ratio are: E = 64109 Pa, = 2,700 kg/m3 and  = 0.3. 
Damping was introduced by defining complex Young’s modulus E(1+jE) with a E = 0.05 and complex 
stiffness Kb(1+jb) and Cb(1+jb) with b = 0.1. The first ten resonance frequencies of the plate, 
computed using the basis of beam functions, are also listed in Table 1. 
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Table 1 – Resonance frequencies 

Resonances source room receiving room plate 

1 29.9 35.6 12.1 

2 45.7 45.7 24.4 

3 54.6 55.1 30.1 

4 55.1 57.8 42.2 

5 59.8 65.5 44.9 

6 62.7 70.7 59.6 

7 71.6 71.6 62.5 

8 75.2 79.9 71.6 

9 77.6 84.2 73.5 

10 81.3 89.7 90.9 

 
The discretized model is made of about 24,000 rectangular elements. The size of the elements ensures 

accuracy of the results up to 500 Hz. The calculations were made up to 800 Hz.  
Figure 3 shows the results of the numerical simulation. The transmission loss obtained with the 

iterative approach is illustrated together with the results of a direct calculation on the top left plot. In the 
direct calculation, the coupled system of equations is solved. Both curves are practically identical, 
because the differences are very small, below 0.3 dB as shown in the bottom left plot. On the right side, 
one can see on the top the spectral radius of the system matrix T of Eq. (11) and on the bottom the 
number of iterations needed. Since the spectral radius is smaller than 1 for all frequencies, convergence 
of the iterative method is ensured. The number of iterations is higher for values of the spectral radius 
near 1 than for lower values as expected.  
 

 
Figure 3 – Transmission loss and other parameters 
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Keeping the rooms the same and varying only the thickness of the plate for the same BCs, it was 
observed that thicker plates had lower values of the spectral radius while thinner plates bigger values, 
including values greater than 1. Apparently, the damping on the plate should be increased for decreasing 
thickness of the plate to ensure convergence of the iterative method. 

Figure 4 shows the sound pressure level in both rooms for three different frequencies, 60 Hz, 79 Hz 
and 150 Hz and the corresponding displacement of the plate. The displacement is shown in dB respect 
to 10-9m. The minimum in the transmission loss curve appears at 79 Hz. 

 

 
Figure 4 – Sound pressure distribution (left) and normal displacement of the plate (right) 
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