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Summary 
The transmission loss of a thin plate in a duct is computed by a coupled Rayleigh-Ritz-BEM 
approach. The normal vibrations of the plate are calculated with a Rayleigh-Ritz approach. They 
are used as basis for the modal expansion of the displacement of the plate. The participation 
factors are determined solving the equation of motion of the plate including the fluid load. The 
load acting on the plate due to the sound pressure is determined using the BEM. The results of the 
model are compared to the results obtained by an approximated approach which treats the plate as 
a piston whose velocity is the mean velocity of the plate. The simulated transmission loss is 
compared with a measurement for validation. Two methods found in the literature to determine the 
transmission loss in a duct which has reflecting terminations are also investigated. 

PACS no. 43.55.Ti, 43.20.Rz 
 
1. Introduction 

The transmission loss (TL) of thin plates is usually 
determined by measurements in TL test facilities 
which consist of two adjacent rooms connected 
through an opening where the specimen is placed. 
These rooms require large spaces and are 
expensive. When there is no access to such 
facility, an alternative way to obtain the TL is to 
measure smaller samples inside a Kundt’s tube. 
The frequency range of validity of the 
measurements lies below the first cut-on frequency 
of the tube, since propagation of plane waves is 
assumed. For small samples, the form of fixation 
to the walls of the tube (boundary conditions) has 
an important influence on the vibration of the plate 
and hence on its transmission coefficient. In this 
work, the sound field inside the Kundt’s tube is 
simulated using the Boundary Element Method 
and the vibration of the plate is determined using a 
Rayleigh-Ritz method which allows the inclusion 
of elastic boundary conditions. The method 
considers full acoustic structure interaction. 
Simply supported, clamped plates and plates fixed 
to the tube with springs will be studied. In the 
latter case, the elastic constants are chosen so that 
the results of the simulation agree with the 
corresponding measurements.  

2. Equation of motion of the plate 

We consider a rectangular plate of sides a and b 
and thickness h which is supported by translational 

and rotational springs with translational and 
rotational rigidities Kb and Cb respectively (see 
Fig. 1).  

 
Figure 1. Plate dimensions and boundary support. 
 
Arbitrary BCs can be studied by setting different 
values to the rigidities. The usual BCs are defined 
by the values Kb=0 and Cb=0 (free), Kb>>1 and 
Cb=0 (simply supported) and Kb>>1 and Cb>>1 
(clamped).  
The displacement of the plate u is calculated with a 
variational principle. Within this approach, the 
plate vibrations correspond to minimum values of 
the action functional H [1]: 

∫∫ +−−=
1

0

1

0

)(
t

t

t

t
b WdtdtVVTH     ,          (1) 

where T is the kinetic energy, V the deformation 
energy of the plate, Vb the potential energy on the 
boundary and W is the work of the external forces.  
If u is developed into a modal or polynomial basis 
φnm and the infinite series is truncated after N terms 
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an equation for the anm can be obtained: 
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where Kpqnm is the stiffness matrix, Mpqnm the mass 
matrix and Fpq the vector of external forces. 

3. Sound field in the tube 

Below the first „cut-on-frequency“ (fc1), only plane 
waves propagate since the modes of higher order 
are strong attenuated (Fig. 2). The latter produce the 
acoustic near field of the plate. For a duct with 
square cross section of side b, the first cut-on-
frequency is fc1=c/2b. 

 
Figure 2. Sound field in Kundt’s tube. 
 
When a partition with known impedance Zpart is 
placed in an infinite duct, a simple expression for 
the transmission coefficient τ can be deduced [2]:  
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Figure 3. Partition in an infinite duct. 
 

4. Approximation: plate as a piston 

Below fc1, the net effect of the plate vibration will 
be similar to the effect of a piston. Under this 
assumption, (4) can be used to predict the 
transmission coefficient of the plate by replacing 
Zpart with the mean impedance of the plate ZP [3]. 
The displacement of the plate uP due to a uniform 
pressure ∆p can be obtained solving (3) with the 
right side Fpq  
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The mean impedance ZP is defined as 
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5. Numeric model 

A numeric procedure to compute the sound field 
inside a duct based on the Boundary Element 
method (BEM) was implemented. It is not limited 
to frequencies below fc1. The limitation is given by 
the discretization of the surface (∆x≤λ/6). 

 
Figure 4. Sound field in Kundt’s tube. 
 
Fig. 4 shows the two computational domains ΩI 
and ΩII and the five different surfaces of the model 
with their respective normal vectors. The BCs on 
all surfaces are listed in Table 1. 
 
Table I: Boundary conditions  

Surface Description Boundary condition 
S0 loudspeaker vn=vL 

S1, S3 side wall vn=0 
S2 plate ∂pI/∂n=∂pII/∂n=ρω2uP 

S4 termination Z=Zt 
 
The boundary integral equations in ΩI and ΩII are 
given by 
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The excitation of the plate is proportional to the 
pressure difference 
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Discretizing (7) and (8) on all surfaces and 
introducing the expansion (2) for uP, pI2 and pII2 
can be expressed in terms of the coefficients anm 

and the two terms on the right hand side in (9) can 
be written as 
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By combining (3), (9) and (10), we obtain the 
system of equations for the coefficients anm: 

   +− pqnmpqnm MK 2( ω  
 pqnmIIpqnmIpqnm PaZjZj =+ )ωω  .    (11) 

6. Transmission loss of the plate 

The transmission loss (TL) of the plate is defined 
as 
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where τ is the transmission coefficient and Wt and 
Wi are the transmitted and incident sound power 
respectively. In the numeric model, the TL is 
obtained emulating the measurement procedure. 
Only plane wave propagation is assumed, therefore 
this method is valid only below fc1. For higher 
frequencies, another definition of TL is needed. 

We consider two different configurations: 1) with 
anechoic termination and 2) with reflecting 
termination 

6.1. Anechoic termination 
In this case, in the downstream section of the duct 
only a plane wave in the +x direction propagates 
while in the upstream section two plane waves 
propagate in the +x and –x directions respectively 
(see Fig. 5). 

 
Figure 5. Microphone positions by a non-reflecting 
termination. 
 
If A, B and C are the amplitudes of the plane 
waves, the transmission coefficient of the plane 

waves will be τ = |C|2/|A|2. τ can be expressed in 
terms of the sound pressure at the microphones 
pM1, pM2 and pM3 as:  
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The results of (13) will be accurate provided       
∆x1 < c / f . 

6.2. Reflecting termination 
An anechoic termination is in practice difficult to 
achieve. Fortunately, also in that case, the TL can 
be determined. When the termination reflects sound, 
there is also a plane wave propagating in the –x 
direction in the downstream section of the duct and 
it must be taken into account. Therefore, an 
additional microphone has to be used (see Fig. 6).  

 
Figure 6. Microphone positions by a reflecting 
termination. 
 
In the literature, one can find two types of methods 
to determine the TL of arbitrary acoustic elements, 
one based on the transfer matrix [4] and the other 
based on the wave decomposition [5].  

6.2.1 Transfer matrix (TM) 
The amplitudes of the plane waves A, B, C and D 
can be related in a matrix formulation as 
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The coefficients of the matrix α, β, γ and δ depend 
only on the physical properties of the acoustic 
element. If the termination is anechoic (D=0), then 
α=A/C and τ=|1/α|2.  Therefore, for the sound 
transmission, the relevant coefficient is α . 
The four coefficients require four equations. Eq. 
(14) represents two equations. The other two 
equations can be obtained by changing the 
termination of the duct. Since two different 
terminations are used, this method is regarded as a 
“two-load technique”.  
If we denote with I and II the different 
configurations, we can deduce a new system of 
equations 
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and using the determinant method, the coefficient α 
can be obtained 
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6.2.2 Wave decomposition (WD) 
In the upstream section of the duct, the sound 
pressure is given by 
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where r1 is the reflection coefficient of the element 
plus the downstream section of the duct. 
The total incident sound pressure on the front side 
of the plate is A, hence the sound pressure 
transmitted to the downstream section of the tube 
will be At, where t is the “complex” transmission 
coefficient (τ = |t|2). The total wave propagating in 
the +x direction can be written as 
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where r2 is the reflection coefficient due to the 
element plus the upstream section of the duct and rb 
is the reflection coefficient of the termination. 
Similarly, the total wave propagating in the –x 
direction can be written as 
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Eqs. (17)-(19) contain five unknown coefficients A, 
r1, t, r2, rb. With the four microphone technique, 
only four independent equations are obtained. By 
changing the termination of the duct, there will be 
four additional equations and three new coefficients 
A´, r´1 and r´b (t and r2 remain the same). Hence, in 
a similar way as in the TM method, two 
measurements are needed to calculate the 
transmission coefficient (two-load technique). τ  is 
written as: 
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7. Numerical example 

The transmission loss of a 1 mm thick aluminium 
plate was simulated. The plate was placed in a 4 m 

long duct with square cross section (0.25 m side 
length).   
In a first calculation, a duct with an anechoic 
termination was considered. In that case, an 
impedance Z=ρc on S4 was assumed. The 
transmission coefficient was computed using (13) 
and the sound pressure in the duct was determined 
using (7) and (8). To validate the numerical model, 
the results of the simulation were compared with the 
results of a measurement. Since the plate was fixed 
to the duct walls using an adhesive material, an 
“elastic BC” was assumed. The rigidities of the 
translational and rotational springs were chosen in 
such a way that a good agreement between 
simulation and measurement is obtained. 
Fig. 7 shows the comparison of simulated and 
measured TLs. The approximated TL obtained with 
(4) is almost identical to the TL computed with (13) 
from the numerical model. The biggest difference 
occurs at low frequencies, below 50 Hz. 

 
Figure 7. Comparison of simulation and measurement. 
 
In Fig. 8, the TL of the plate for different BCs is 
illustrated. It can be observed, that the BCs exert a 
strong influence on the TL.  

 
Figure 8. TL for different BCs. 
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The displacement of the plate for three different 
frequencies is depicted in Fig. 9. The pattern of 
deformation is complicated and can excite higher 
modes in the duct near the plate, but since they are 
strongly attenuated, they disappear at a short 
distance. 
 
        120 Hz                   360 Hz                   420 Hz 

 
Figure 9. Displacement of the plate. 
 
In a second calculation, a duct with a reflecting 
termination was considered. As described in 
section 6, two different impedances are required. 
We use the impedances  

ZI /ρc = 0.3(1+j)   and   ZII /ρc = +0.1(1-j)  . 
The TL was calculated applying the TM and WD 
approaches and the results were compared. 

 
Figure 10. Pressure level in the duct for different 
terminations. 
 
In Fig. 10, the pressure distribution inside the duct 
at 120 Hz for three different terminations is shown. 
For an anechoic termination (Z=ρc), there is only a 
plane wave travelling in the +x direction and the 
pressure level is constant. For a reflecting 
termination, waves travelling in both directions 
exist and zones of maxima and minima can be 
observed. 

Fig. 11 compares the TL of the same plate 
obtained with different terminations. The TM and 
WD approaches for reflecting termination provide 
identical results and they differ minimally from the 
result obtained with the anechoic termination. 

 
Figure 11. Simulated TL for the one- and two-load 
technique. 
 

8. Conclusions 

A numerical model to determine the transmission 
loss of a plate in a duct based on a coupled 
Rayleigh-Ritz-BEM method was implemented. 
The approach accepts arbitrary boundary 
conditions for the plate and emulates 
measurements with three or four microphones 
depending on the termination of the duct. By 
means of this method it was possible to evaluate 
the accuracy of the approximation that considers 
the plate as a piston. The results indicate that this 
assumption is valid. The numerical model provides 
results that agree well with the measurements but 
it was found that a correct estimation of the 
boundary condition of the plate is very important. 
Finally, it was shown that it is not necessary to 
have an anechoic termination in the duct to 
determine accurately the transmission loss of an 
element. However, two different terminations and 
two separate measurements are required. The TL 
can be calculated with either the TM or the WD 
approach since both are equivalent. 
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