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Numerical simulations for estimating the transmission loss can be an important alternative 
to measurements when there is no access to transmission loss test facilities. With such a 
tool, the properties of partitions can be varied without having to construct them, so that 
only the optimized variant would be built and measured. Due to the dimensions of a real 
test facility and the power of actual computers, conventional BEM or FEM can cover only 
the low and middle frequency range. The present work handles the source room, the 
partition and the receiver room separately. Starting from an initial state, the sound 
pressure in both rooms and the displacement of the partition are successively improved 
through the combination of separate calculations of sound radiation and structure 
vibration until a sufficiently accurate value is achieved. With this approach, instead of 
solving one large system, three smaller systems will be solved and higher frequencies can be 
handled. A significant gain can be obtained if the number of iterations remains low. This 
should be the case at frequencies apart from the resonance frequencies of both rooms and 
of the partition or at the resonance frequencies if a small damping is inserted in each 
system. 
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1 INTRODUCTION 
 
 Product developers are relying more and more on simulations at the design stage since the 
use of computational tools can lead to significant costs reduction. For the case of transmission 
loss measurements where big effort has to be spent to effectively close all openings connecting 
source and receiver rooms, numerical simulations represent an interesting alternative. Such 
simulations allow design optimization by means of “virtual measurements”, so that the best 
prototypes or the ones with the most interesting properties are selected for the real 
measurements. The calculations can be made using deterministic methods like Finite Element 
(FEM) and Boundary Element (BEM). Since the dimensions of real test facilities are not small, 
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the frequency range of the simulations is usually limited to low and middle frequencies. The 
extension of the range of application of these methods is a very important task. In the present 
work, an iterative method is developed which treats source room, partition and receiver room 
separately in order to reduce the size of the analyzed systems and extend the frequency range of 
application.  
 
2 CALCULATION OF THE TRANSMISSION LOSS 
 
 The transmission loss (R) of the partition is calculated following the procedure described in 
DIN EN ISO 10140-21. The partition is placed between source and receiving room (see Fig. 1) 
and R is defined as 
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(Eqn. (2) in Ref. 1), where L1 is the mean sound pressure in source room in dB (average of 
pressure in field points 1), L2 mean sound pressure in receiving room in dB (average of pressure 
in field points 2), S the area of the opening where the element is mounted (in m2) and A the 
equivalent absorbing area in the receiving room (in m2). 
 

 
 
Fig. 1 - Illustration of the test facility. 
 
Equation (1) requires that the sound fields are diffuse and that the sound in the receiving room is 
exclusively due to the sound coming through the test element. 
 
3 MOTION OF THE PARTITION 
 
 In this study we consider thin plates, i.e. the displacement is the same at both sides of the 
plate. For acoustic calculations, only the normal displacement of the plate un is relevant. Since 
the motion of the plate is treated separately, different methods can be used to compute the 
normal displacement.  
 If a FEM calculation is performed, the equation of motion of the plate is given by 

FuMK =− )( 2ω                                                            (2) 
where K is the stiffness matrix, M the mass matrix, F the external force vector and u represents 
the vector of nodal displacements. The FEM mesh does not need to match the acoustic mesh, so 
that in general, the normal displacement (acoustic) can be defined as un=Lu, where L is a matrix 
relating the nodal FEM displacements to the normal acoustic displacements. 



 For rectangular plates, a Ritz-Rayleigh approach can be applied. The normal displacement 
of the plate is expanded in a set of functions µνψ   
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and the equation of motion of the plate is obtained by minimizing a functional. The minimization 
leads to the equation2: 

PaMK =− )( 2ω                                                           (4) 
where a is the vector of unknown coefficients µνa and P represents the generalized pressure 
acting on the plate. The normal displacement can be obtained at the acoustic mesh nodes using 
Eqn. (3) which in matrix form can be written as 

aun φ=                                                              (5) 
where φ is the matrix of the functions µνψ . In the following calculations, this approach was used 
to obtain the displacements of the plate.   
 
4 SOUND FIELD IN THE ROOMS 
 
 The sound pressure in the rooms is calculated using the BEM. The whole surface of the 
acoustic domain is subdivided in 4 surfaces, S1-S4 with normal vectors n1-n4 as shown in Fig. 2. 
S2 correspond to the plate and S3 to the rigid surface between the rooms. On S1 and on S4 the 
impedances Z1 and Z4 are prescribed. 
 

 
 
Fig. 2 – BEM model for the test facility and the plate. 
 
 The integral equations for the rooms are given by 
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where ρ is the density of air, g the point source Green’s function, pI1-pI3 and pII2-pII4 the surface 
pressures and pq the sound pressure due to the sound source q. 
 Discretization of Eqs. (6) and (7) on the boundary leads to two matrix equations 
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that provide the values of the sound pressure on the whole surface assuming nu is known. Here 
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5 ITERATION SCHEME 
 
 Combining Eqns. (8) and (9) and replacing Eqn. (5) in Eqn. (3), an iterative scheme with a 
double step can be obtained: 
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In Eq. (10), Mp∆  is the pressure difference due to the motion of the plate and Ep∆  is the pressure 
difference due to the sound sources. pL  is the operator describing the motion of the plate and I

fL  

and II
fL are the operators regarding the excitation of the plate due to the sound pressure. 

 The iteration starts assuming that the plate does not vibrate 0)0( =nu  (blocked-pressure 
approximation). Inserting this value in Eqn. (10), one obtains 0)1( =∆ Mp  and Epn pLu ∆=)1( . The 
calculations are then repeated until the difference between step i-1 and i is smaller than a certain 
value or the maximum number of iterations is reached. 
 The iterative approach will be useful if the solution converges to the right solution with a 
small number of iterations. Introducing some damping to the plate as well as absorption at the 
walls of both rooms, the number of iterations should decrease. 
 A combination of Eqs. (10) provides a single step iteration of the form 
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The iteration will converge if the spectral radius of the system matrix T is less than 1. The 
spectral radius is defined as ρm=max(|λi|), where λi are the eigenvalues of T. 
 
6 NUMERICAL RESULTS 
 
 The window test facility of the “Institut für Bauphysik – Fraunhofer Institut” in Stuttgart, 
Germany was considered. The source and receiving rooms are rectangular rooms with 
dimensions 5.74m × 3.75m × 3.11m and 4.85m × 3.75m × 3.11m respectively. The opening is 
also rectangular with dimensions 1.25m × 1.5m. For simplicity, the width of the wall dividing 
the two rooms was neglected. In the source room a small absorption α = 0.18 was considered 
while in the receiving room a high absorption α = 0.89 was used.  
 A point source was placed near one corner of the source room. Field points 1 are placed on a 
sphere of radius 0.75m centered approximately in the middle of the source room. Field points 2 
were set 0.5m away from the plate (see Fig. 1). 
 
6.1 Comparison between Direct and Iterative Methods 
 
 For verification of the iterative approach, the TL of an aluminum plate obtained with the 
iterative approach was compared with the TL obtained by solving the coupled problem (direct 
approach). The simulated plate has the dimensions of the opening and a thickness of 0.004m. For 



aluminum, the values taken for Young’s modulus, density and Poisson’s ratio are: E = 64⋅109 Pa, 
ρp  = 2,700 kg/m3 and ν = 0.3. Damping was considered in the plate (η = 0.05). 
 

 
Fig. 3 – Comparison between direct and iterative methods. 
 
 Figure 3 shows the results of the numerical simulation. The transmission loss obtained with 
the iterative approach is illustrated together with the results of a direct calculation on the top left 
plot. Both curves are practically identical, because the differences are very small, below 0.3 dB 
as shown in the bottom left plot. On the right side, one can see on the top the spectral radius of 
the system matrix T of Eqn. (11) and on the bottom the number of iterations needed. Since the 
spectral radius is smaller than 1 for all frequencies, convergence of the iterative method is 
ensured. The number of iterations is higher for values of the spectral radius near 1 than for lower 
values as expected. 

 
Fig. 4 – Pressure level distribution. 



 Figure 4 shows the sound pressure level in both rooms for four different frequencies, 60 Hz, 
80 Hz 100 Hz and 150 Hz. It is easy to recognize the presence of the resonances in the source 
room, since the absorption is small. The resonances are also present in the receiver room but they 
are less pronounced due to the higher absorption of the walls. The condition of a diffuse field in 
both rooms for the validity of Eqn. (1) is not satisfied. 
 
6.2 Sensitivity to the Wall Absorption  
 
 To attenuate the resonances in the source room, the absorption was increased, while the 
absorption in the receiver room remained the same. Two additional absorption coefficients 
α=0.64 and α=0.89 were tested. The pressure level distribution is presented in Fig. 5. The higher 
absorption helps a bit but still no good diffusivity is obtained.   
 

α = 0.64 

 
α = 0.89 

 
Fig. 5 – Pressure level distribution. 
 

6.3 Sensitivity to the Thickness of the Plate 
 
 The thickness of the plate was varied to see the influence on the spectral radius and on the 
convergence of the iterative method. All other parameters of the calculation did not change. Two 



additional values of the thickness were studied, h=0.002 m and h=0.001 m. In Fig. 6, the curves 
of the spectral radius for the three cases are compared. The three curves show the same 
behaviour, i.e. large oscillations at low frequencies and smaller oscillations together with a 
uniform decay at high frequencies. The curves are shifted up by decreasing thickness. 
 

 
Fig. 6 – Spectral radii. 
 
 In Fig. 7, the curves of transmission loss for the two additional cases are shown as well as 
the corresponding spectral radii. At the frequencies where ρm >1, the deviations with respect to 
the results of the direct calculation are usually very large and for the other frequencies good 
agreement can be observed. 
 

 
Fig. 7 – Transmission loss and spectral radii. 



7 CONCLUSIONS 
 
 This paper presents an iterative approach to simulate transmission loss measurements. The 
method solves three separate smaller systems instead of one large system. When the spectral 
radius of the system matrix is less than 1, the method converges in only a few iterations. The 
numerical tests show that convergence problems are present for very thin structures.  
 The condition of diffuse sound fields is not satisfied, especially if the test facility is made of 
rectangular rooms. Increasing the absorption of the walls helps slightly. Ways to increase the 
diffusivity and to ensure the convergence need to be investigated. 
 The calculations were performed up to 800 Hz with a model of 24000 elements. To cover a 
higher frequency range, larger models are needed. For such big models, instead of using the 
direct BEM for the sound pressure calculation, the Fast Multipole BEM3 can be easily inserted in 
the method. This task will be performed in a future work. 
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