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The frequency dependent backscattering of an obstacle can be calculated by means of differ-
ent numerical methods. The use of classical methods like the conventional BEM or FEM 
leads to high computing times in combination with large memory requirements due to the re-
quired discretization efforts in the higher frequency range.  
Classical high-frequency approximation procedures like the Kirchhoff- or the Plane-Wave-
method reduce the calculation time at the expense of imprecise solutions. 
This paper will present the results of a new approach which combines the advantages of all 
the above mentioned methods using alternative ansatz functions. This approach allows it to 
use a discretization which needs just one element per wavelength. So in comparison with the 
common rule of thumb of six elements per wavelength even much larger problems and/or 
higher frequencies can be calculated. 

1. Introduction 

To calculate the frequency-dependent acoustic backscattering intensity of an underwater ob-
ject, various methods can be used. First, classical methods (FEM / BEM) may be used but they lead 
to large computation times and memory requirements due to the fine element mesh descretization 
required at high frequencies. High-frequency approximation methods (Kirchhoff, PWA) may also 
be used which need low computation time but produce less accurate solutions.  

To decide whether a high-frequency approximation method can be used in this paper a new 
approach for the BEM function is derived and tested, which reduces the computational requirements 
of the classical BEM by reducing the required elements significantly. The results are compared in 
terms of quality and performance. All calculations were performed using a special application to the 
BEM-based simulation of scattering problems 1. 
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2. Acoustic backscattering intensity (target strength, TS) 

The acoustic backscattering intensity or target strength (TS) is defined as the ratio of incident 
to reflected sound intensity 2. In order to obtain comparable values, a sound source is placed in the 
far field of the object and then the backscattering intensity is calculated back to a distance of one 
meter to the object determined. It satisfies the following formula: 

 . (1) 

Here,  is the pressure amplitude of the signal reflected from the object in the far field and 
 the corresponding one of the incident wave. At a given pressure and speed on the boundary  

of the known object, the backscattered pressure by means of the Kirchhoff integral can be calcu-
lated by 

  (2) 

with  being the fundamental solution of the Helmholtz equation. 

3. Kirchhoff (KIA) and plane wave approximation (PWA) 

The above-mentioned integral (2) requires knowledge of the pressure and the velocity on the 
surface of the object. A relationship between  and  by means of a reflection coefficient can 
be defined depending on the acoustic direction: 

 . (3) 

This coefficient is the ratio of pressure and normal velocity of the incident to the scattered 
sound wave directly on the surface and can be calculated using the specified Brekhovskikh 3 pro-
cess. The approximation is based on the assumption that the law of reflection for plane waves and 
infinite plates can be applied on each element. For this reason it is particularly true for high fre-
quencies and only for convex objects. In this paper, only the sound-hard case ( ) which is rele-
vant for very high frequencies is considered.  

Using the Kirchhoff high-frequency approximation 4 for the illuminated part of the surface 
holds 

  (4) 

while for the PWA high-frequency approximation 4, the integration over the entire surface 
must be performed: 

 . (5) 

 
The angle  is build from the direction of 

the incident wave  and the element normal  
of the respective element  as shown in Fig. 1. 

 
Both Eqs. (4) and (5) now have the advan-

tage that all the required quantities are known and 
thus the integral can be calculated. 

 
Fig. 1. normal vectors used in the PWA 



19th International Congress on Sound and Vibration, Vilnius, Lithuania, July 8-12, 2012 
 

 
3 

As an example, the target strength of a cylinder with spherical caps consisting of about 76,000 
elements, which is irradiated under an aspect angle of 30°, is calculated for 20 kHz. In Fig. 2, the 
real part of the sound pressure on the surface is shown for the Kirchhoff method, in Fig. 3 for the 
PWA and in Fig. 4 for the conventional BEM. 

 

Fig. 2. Kirchhoff approximation,  

 

Fig. 3. Plane wave approximation,  

 

Fig. 4. conventional BEM,  

The resulting target strength (Fig. 5) is all about the same level. 
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Fig. 5. target strength of a rigid cylinder at  = 20 kHz 
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But in certain cases, the results of the two high-frequency method, however, do not match 
well. Another cylinder with one flat end which is hit from two different aspect angles serves as an 
example using a frequency range from 0.1 to 10 kHz. 

In Fig. 6, the angle of incidence was 90° and the target point was at an angle of 180°. Here, 
the PWA (green) is in good agreement with the "true solution" (blue). 

In Fig. 7, the target point was at an angle of 150° and the incident angle was 30°. In this case, 
Kirchhoff (red) matches with the "true solution" (blue). 
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Fig. 6. Target strength for  = 90°,  = 180° 
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Fig. 7. Target strength for  = 30°,  = 150° 

The reason for this lies in the prefactors of the Eq.s (4) and (5). For the PWA this prefactor,  
( ), depends on the element normal and takes values between 0 and 2. For the Kirchhoff 
approximation, this value is 2 on the illuminated side and vanishes on the "dark" side. 

4. BEM formulation with a plane-wave based ansatz function 

To determine this prefactor precisely, the following approach is chosen for the pressure at any 
point : 

 . (6) 

The relevant formula for the classical BEM can be obtained by means of the Kirchhoff inte-
gral (2). It reads in discretized form (using triangles) for the rigid case: 

  (7) 

with  Variable of integration, "field point" 
  load point 
  normal vector at field point 

To solve the integrals over the triangles in (7), they must be made so small that the pressure 
can be set outside the integral when using constant shape functions. Using the approach in Eq. (6) 
for  and  with Eq. (7) holds 

 . (8) 

Since the prefactor  can be assumed to be constant for much larger areas, it can also be 
taken outside the integral . The resulting system of equations no longer determines the unknown 
pressure  as in the classical BEM, but the unknown factor . This system of equations now has far 
fewer unknowns than when using the classical constant or linear shape functions. 
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4.1 Example 1: small cylinder 
Here, the pressure on the surface of a small cylinder (2 × 1 × 1 m) with one round cap is cal-

culated. The cylinder is irradiated from 30° by a monopole source with a frequency of  = 10 kHz. 

 

Fig. 8. small rigid cylinder 

For the two left results (Fig. 9 and Fig. 11), constant shape functions were used while the right 
solutions (Fig. 10 and Fig. 11) were calculated with the plane-wave ansatz function. The top cylin-
ders consist of 2,500 elements, the bottom ones of 32,000 elements. 

Fig. 9. ,  = 2,500 
 = 6.89 s 

 Fig. 10. w/PWA, ,  = 2,500 
 = 9.38 s 

Fig. 11. ,  = 32,000 
 = 1,351.8 s 

Fig. 12. w/PWA, ,  = 32,000 
 = 1,423.4 s 

Although only 2,500 elements (Fig. 10, top right) are used, the result is almost as good as the 
32,000 elements solution (Fig. 12, bottom right). 

Calculating the target strength results in a similar situation. The classical constant or linear 
shape functions require about 6 elements per wavelength. In contrast, using the plane wave ansatz 
function requires only one element per wavelength (for convex surface portions). 
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4.2 Example 2: submarine model 

The sound pressure on the surface of a submarine model (overall size: 57 × 14 × 13 m,  
= 0.95 m,  = 1.5 kHz,  = 1 m,  = 21,062) in water was calculated without (Fig. 13) and with 
the additional ansatz function (Fig. 14). All figures will show the real part of the pressure on the 
surface and all colours are adjusted to represent the same range. 

Fig. 13. , conventional BEM, 
 = 303 s (direct solver, Intel MKL) 

Fig. 14. , with ansatz function, 
 = 389 s (direct solver, Intel MKL) 

The quality of the conventional BEM is worse due to the “large” elements (with regard to the 
wavelength). The quality is much higher when using the ansatz function, only within the areas with 
multiple reflection the progression of sound pressure is worse. 

5. Using the ansatz function to determine reflecting surfaces 

The irregularities can be seen clearly using the submarine model of chap. 4.2 with much 
smaller elements  (  = 0.23 m,  = 175.412, Fig. 15) and looking at the tower and the fins 
of the coarser mesh (Fig. 16).  

 

Fig. 15. , conventional BEM, 
 = 1.5 kHz,  = 175,412 
 = 23,255 s [6:27:35] with GMRES 

 

Fig. 16. , with ansatz function, 
 = 1.5 kHz,  = 21,062 

 = 389 s (direct solver, Intel MKL) 

So the additional function may be used for the identification of surface areas where multiple 
reflections occur (concave areas).  
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To get these areas of interest, the ratio between the imaginary and the real part of the prefactor 
 is used (Fig. 17). The use of a threshold function removes the areas with small surface pressure 

values (Fig. 18).  

Fig. 17. ratio between  and  Fig. 18. applying an threshold function for “small” 
pressure values 

Applying a geometric filter to select and mark all elements which are part of a multi-reflecting 
surface area (Fig. 19) makes it possible to refine these areas in a new surface mesh (Fig. 20). 

Fig. 19. marked surface areas to refine Fig. 20. refined areas,  = 31,622 

The results of the partially refined mesh are good (Fig. 21) and very near compared to the fin-
est mesh (Fig. 15). 

 

 

Fig. 21. , with ansatz function and refined areas, 
 = 1.5 kHz,  = 31,622 

 = 1,112 s [0:18:31] (direct solver, Intel MKL) 
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The results for the different mesh sizes and methods can also be seen when comparing the real 
part of the surface pressure at the lower side of the front fin (Figs. 22 ... 25). 

 

Fig. 22. 
 = 21,062 

conventional BEM 
 
 = 303 s 

 

Fig. 23. 
 = 21,062 

with ansatz function 
 
 = 389 s 

 

Fig. 24. 
 = 31,622 

refined mesh  
with ansatz function 

 = 1,112 s 
[0:18:31] 

 

Fig. 25. 
 = 175,412 

conventional BEM 
with GMRES 

 = 23,255 s 
[6:27:35] 

The use of the partially refined mesh gives acceptable results at a reasonable solution time. At 
this time, the ansatz function works fine when using a direct matrix-based solver (Intel Math Kernel 
Library) but did not converge well with an iterative solver (GMRES). So the condition of the sys-
tem matrix should be optimized, e.g. by adding the Burton-Miller-formulation to the ansatz func-
tion. 

6. Conclusions and future work 

The use of the new plane-wave based ansatz function for structures with primarily convex 
surfaces gives very good results and allows the use of coarse meshes with about one element per 
wavelength, while classical constant or linear shape functions require about 6 elements per wave-
length. This allows much larger problems to be solved using the same hardware. 

If this method is used for the detection of multiple reflective surface portions, this problem 
can be solved with significant performance advantages by a partial refinement of the mesh. 

In addition to the extension of the method to the Burton-Miller approach, further work on the 
combination of this method with other approximate methods has to be done. 
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