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Introduction 
The Multi-Level Fast Multipole Method (MLFMM) allows 
the computation of acoustical problems based on the 
Boundary Element Method (BEM) where the discretized 
models may consist of a huge number of elements. 

The required multipole expansion order of the so-called 
translation operator increases significantly with higher 
frequencies and larger dimensions of the model considered. 

This problem can be avoided by combining the MLFMM 
with a Source Clustering Method (SCM) that replaces this 
translation operator by a summation method, which con-
siders the interactions between the relevant points of the 
source and target clusters. 

Multi-Level Fast Multipole Method 
The Multi-Level Fast Multipole Method (MLFMM) 
describes a fast algorithm to accelerate the matrix-vector 
product which is required for the iterative solution of BEM-
based calculations without ever assembling the complete 
matrix. Details of the fundamentals of the MLFMM can be 
found in [1, 2, 3, 4], details of the practical implementation 
of the code and results can be found in [5, 6, 7]. 

One of the most critical functions with respect to the 
numerics is the translation operator . This operator 
“transfers” the multipole potential from a source cluster 
(“source box”) to the center of a target cluster (“target box”) 
in the so-called “Multipole-to-Local”-step (M2L) and can be 
represented as a truncated series [Eq. (1)]. 

  (1) 

with  distance vector between cluster centers 
  normalized distance vector 
  set of vectors on the unit sphere 
  multipole order (maximum) 
  wave number 
  Hankel function 
  Legendre polynomials 

The value required for the multipole order depends primarily 
on the wave number and the cluster distance. If a value of 80 
- 90 is exceeded, one can hardly achieve reasonable results 
for the series due to numerical inaccuracies of the Hankel 
functions and high memory requirements for the coefficients 
of the unit sphere, which is used for integration. 

 

A worst case is e.g. having two smaller structures with a 
bigger distance between them (Figure 1). 

Figure 1: Two small spheres with a big distance in between 

Because of the distance, the surrounding “main” box is very 
large (Figure 2), requiring very high values for the multipole 
order , but the interaction between these structures is 
not really significant. 

Figure 2: Cubic clusters around two small spheres 

Example: Cylinder with round end cap at 10 kHz 

A cylinder with one rounded end cap is hit by a plane wave 
at an incident angle of 30° and used to illustrate the problem 
(dimensions: 3 × 1 × 1 m, element size  = 0.027 m, 

 = 57,652 triangular constant elements, Figure 3).  

 

Figure 3: Rounded cylinder consisting of 57,652 elements 



The 3:1 ratio between the diameter and the length results in 
large distances between the clusters. After applying the 
“cluster boxing” algorithm, a set of 6,328 cubic boxes at 7 
levels is generated (Figure 4). 

Figure 4: Cubic cluster boxes around the cylinder 
(maximum number of points per box  = 30) 

At a test frequency of  = 10 kHz the resulting wave number 
is  ≈ 41,89 1/m (water, density  = 1,000 kg/m³, sound 
speed  = 1,500 m/s, wave length  = 0.150 m). This wave 
number and the distances between the clusters on the same 
level are used to calculate the required box-level specific 
values (Table 1).  

Box level 0 1 2 3 4 5 6 

 1 8 16 64 336 1,546 4,414

 3.09 1.54 0.77 0.39 0.19 0.10 0.05

 5.35 2.68 1.34 0.67 0.33 0.17 0.08

 224.2 112.1 57.1 28.0 14.0 7.0 3.5

     67 36 19 11 7

     147 78 44 25 16

     43,808 12,482 3,872 1,250 512

Table 1: Box level specific values resulting from the 
MLFMM cluster boxing for the cylinder as shown in Fig. 2 

with  number of cubic boxes 
  length of box edge in [m] 
  diameter (diagonal) of box in [m] 
   value of box 
  minimum required multipole order for a box 
  maximum required multipole order for a box 
  number of vectors of the unit sphere of a box 

The result using the conventional BEM with a GMRES 
solver is shown in Figure 5 (used as a reference solution). 

Figure 5: Surface pressure  of the cylinder, 
using the conventional BEM with a GMRES solver 
(10 kHz,  = 2,545 s,  = 31,  = 10-7) 

The result of the calculation using the MLFMM with these 
values is shown in Figure 6. The error within the quality and 
the quantity of the pressure gradient is clearly visible, 
especially at the boundaries of the cluster boxes. 

Figure 6: Surface pressure  of the cylinder, 
using the standard MLFMM (with 96 cluster boxes at box 
level 3,  = 159 s,  = 32,  = 10-7) 

This is due to the high value of the multipole order 
( [2] = 147, see orange field in Table 1), which is 
required for the translation between clusters at box level 2. 
The error resulting due to numerical inaccuracies of the 
Hankel functions on this level later is transformed to the 
boxes on level 3 and so on. 

Source Clustering Method 
The idea behind this new method presented is to “remove” 
the critical M2L-step from the MLFMM algorithm and to 
calculate the corresponding interactions with a source 
clustering algorithm. This method is closely related to the 
so-called Panel Clustering Method, with some differences 
due to the integration within the MLFMM.  

The required cluster interactions on the same box level are 
defined by the so-called Interaction List 2 ( , green boxes), 
resulting from the MLFMM boxing algorithm (Figure 7). 

At first, a conventional BEM Helmholtz integration over all 
source points (green dots) is used to build a set of SCM 
coefficients for a “representative” load point in the 
destination cluster’s (blue box) weight center (center of all 
elements, green circle).  

 

Figure 7: Step 1 of the simple Source Clustering Method, 
calculation of box center representatives at box level 2 

In a second step, a corrective transfer function is used to 
obtain an approximated part of the “representative” value at 
each destination point (blue dots) within the current 
destination cluster (Figure 8, next page). All near-field 
interactions between the destination points and the source 
points in the gray boxes are calculated by the MLFMM. 



 

Figure 8: Step 2 of the simple Source Clustering Method, 
translation to the destination points at box level 2 

Results of the SCM (simple version) 
The simple version of the SCM only calculates the 
interactions at box level 2. The result of this combination is 
better with respect to quantity but the quality is not really 
satisfactory (Figure 9). 

Figure 9: Surface pressure  using the simple 
SCM algorithm for box level 2 [SCM 3/1] 
(10 kHz,  = 95 s,  = 31,  = 10-7) 

Recursive version of the SCM 
In order to obtain better results, a modified recursive version 
was designed and implemented where the weight centers of 
the child boxes of the destination cluster are used as the 
representative points (green circles, Figure 10). 

 

Figure 10: Step 1 of the recursive Source Clustering 
Method, calculation of representatives at the weight centers 
of the child boxes of the destination cluster boxes at level 3 

The number of the resulting SCM coefficients and the 
required memory is higher compared to the simple version, 
but the approximated values at the destination points (Figure 
11) are quite more precise and therefore better due to the 
smaller distances between the representative and the 
destination points. 

 

Figure 11: Step 2 of the recursive Source Clustering 
Method, translation to the destination points at box level 3 

Results of the SCM (recursive version) 
The result achieved when calculating the M2L-interactions 
at box levels 2 and 3 with the recursive SCM version is more 
precise (Figure 12). 

Figure 12: Surface pressure  using the recursive 
SCM algorithm for box levels 2 and 3 [SCM 4/1] 
(10 kHz,  = 71 s,  = 31,  = 10-7) 

Even if there are still some slight differences with respect to 
the pressure gradient when comparing with the conventional 
BEM, the results for the scattered pressure level at a distance 
of 100 m is nearly exact the same (Figure 13). 
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Figure 13: Scattered pressure level  on a circle 
with a distance of 100 m to the center of the structure 

Remark: All calculations were done on a Dual XEON 
workstation with 2,66 GHz, 12 cores and 48 GB RAM, 
running LINUX and using the GMRES solver of a self-
developed parallelized BEM solver application code [6] 
which supports multiple solvers and different solving 
methods. 



Conclusions 
It could be shown that the implemented Source Clustering 
Method can be used to overcome the problem of the 
Multipole-to-Local translation step within the Multi-Level 
Fast Multipole method, when the required multipole order is 
too high to obtain useable values for the Hankel function. 

Another advantage is the lower amount of system memory 
required for the expansion coefficients of the high-order unit 
spheres at these levels. 

The approximation for the local parts works well when the 
distance between the source and destination points is big 
enough to fulfill the “far”-condition of the MLFMM and can 
be optimized with a recursive version of the presented 
method. 

It is also possible to store the required SCM coefficients 
when enough memory is available, in so doing the time for 
the solving process could be reduced in comparison with the 
standard MLFMM. 

Anyway, the number of elements (= source / destination 
points) is relevant for the SCM solving time and the memory 
required and so the SCM step can be the most expensive one 
within the MLFMM matrix-vector-product calculation. 

Outlook 
Additional work is recommended to optimize the corrective 
functions and to find the best combination of the box levels 
calculated by SCM / MLFMM and to optimize an additional 
sub-leveling step during the recursive part as well. 

A first extension to the method using this sub-leveling gives 
better results (Figure 14) but at higher costs with respect to 
solution time and memory. 

Figure 14: Surface pressure  using the recursive 
SCM algorithm with sub-leveling for box levels 2 and 3 
[SCM 4/2]  
(10 kHz,  = 90 s,  = 31,  = 10-7) 
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