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ABSTRACT 

The calculation of the acoustic backscattering from larger thin-walled underwater objects requires, especially 
in the middle and higher frequency range, computing resources that are usually not available in practice. 
Therefore, the use of appropriate approximate methods appear useful for those cases. 
In this paper, a solution method is presented that is tracking "sound beams", generated by a plane wave and 
impinging on a submerged object. The method determines the complex reflection and transmission coeffi-
cients at the incident points, taking into account shell boundary conditions, and generates “child”-beams 
which are then followed up to a predefined level. Therefore, the material-dependent refraction and a possible 
multiple reflection can be considered within the structure. An appropriate post-processing calculation pro-
vides the backscattered sound pressure in the far field. 
Results for "inner" structures that include reflective areas and which are surrounded by thin “outer” shell 
structures are presented and compared with results of FEM-based applications (where applicable). Addi-
tionally, a method to determine the "hot spots" based on monostatic calculations is described. 
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1. INTRODUCTION AND BASICS 
To calculate the frequency-dependent acoustic backscattering of an object, especially for coupled 

cases, time consuming numerical methods (FEM / BEM) must be used. In these methods, the com-
putational effort increases strongly with the excitation frequency, since the required discretization of 
the surface(s) and/or the volume(s) must be performed correspondingly fine. 

The classic rule of thumb for determining the element size requires at least six elements per 
wave-length when using BE methods. This problem can be reduced with the help of high-frequency 
approximation methods (PWA, Kirchhoff-Approximation). Within these methods, optical analogies 
are used, which are only allowed for large frequencies. 

1.1 Acoustic Backscattering 

The acoustic sound backscattering of the surface  of the object can be calculated by means of the 
Kirchhoff-Helmholtz integral (Eq. 1) at a known pressure and velocity field on the surface (with the 
function g as the fundamental solution of the Helmholtz equation). 
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With the use of a full coupled boundary element calculation, the unknown pressure and the ve-
locity values could be determined on the surface  of the object and then, in a post-processing step, 
the backscattered sound pressure at any point in the far field, too. 
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1.2 Ray-tracing based approach 

The numerical method for coupled problems mentioned above requires a very high computational 
effort, especially at high frequencies. This can be significantly reduced if the unknown pressure and 
velocity values on the surface can be determined by means of ray-theoretical approaches. 

iTiR TppRpp   ,  (2)

Here, the incident sound beam pi leads to a reflected pR and a transmitted pT sound beam. The re-
flection coefficient R and the transmission coefficient T (Eq. 2) can be calculated by means of the 
methods specified by Brekhovskikh (1).  

This method is based on the assumption that the law of reflection for plane waves on infinite plates 
is applied for each sound beam. For this reason, the method is suitable for high frequencies. 

1.3 Beam path tracing 

The beam path to track can be explained using an example consisting of a rigid angle inside a 
thin-walled sphere (Figure 1, Figure 2).  

The incident beam (0, red) hits the thin spherical shell and is divided into two beams. The first 
reflected beam (1R, blue) leaves the structure and hits no other surfaces. The transmitted beam (1T, 
green) runs inside, finds the top corner and is tracked until it leaves the structure (5T, blue).  

 
Figure 1 - 2D ray tracing (maximum level 5) 

 
Figure 2 - 3D ray tracing (maximum level 5) 

The Kirchhoff-Helmholtz integral (Eq. 1) for determining the acoustic sound backscattering is now 
performed only on the integration area for all out-going N beams (Figure 1, 2, blue rays). 

The incident plane wave is described according to Figure 3 by a number of equal sized beams. 

 
Figure 3 - Relevant area of a beam with a fixed size 

 

 
Figure 4 - Projected surface using a 

fixed beam size 

The surface of a sphere e.g. is therefore not precisely modeled, but simulated by the projection of 
these beams (Figure 4). 
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1.4 Fast hit algorithm 

To be able to perform the ray tracing, the surface element hit by the beam must be determined. This 
can be very time consuming for large numbers of elements in complex structures. For this reason, the 
elements of the object are placed within boxes which are enclosed by spheres. Then, each box is re-
cursively divided into eight sub-boxes (“octants”). 

To determine which element will eventually be hit by the beam, it is first checked if there is an 
intersection with the box at level 1. When struck, all boxes at level 2 will be examined. This continues 
recursively until the box with the highest available level is reached. Figure 5 gives a 2D example for a 
beam hitting an element in a box at box level 6. 

Box-Level 1

Box-Level 2

BL 3

BL 4

5
6

 
Figure 5 - Boxing structure (2D) 

Table 1 - Level-specific elements per box 
relationship 

Level 
Lbox 

Elements 
Nmax,elem/box 

Boxes 
Nbox/L 

1 1.000.000 1 

2 125.000 8 

3 15.625 64 

4 1.953 512 

5 244 4.096 

6 30 32.768 

7 4 262.144 

 
 

Table 1 shows the number of elements that are in one box, depending on its level. The box at level 
7 contains e.g. a maximum of four elements, which are then individually tested for a hit. In this manner 
the element can therefore be found with a very small number of comparisons.  

This “Hit check” algorithm is based on the boxing algorithm used within the Multi-Level Fast 
Multipole Method (MLFMM) published in (2). 

1.5 Optimizations 

1.5.1 Parallelizability 
The BEAM method can be parallelized well when subsets of the required "start beams” are assigned 

to the available CPU cores, since the tracing of a single beam is independent of all others. 
However, the reduction of the solution time can not be completely proportionally scaled because 

the numbers of transmitted or reflected "child beams" may vary and thus one can not achieve a 100% 
CPU usage. Table 2 shows an example of the thread-depending solution times of the process. 

Table 2 - Solution times for different thread counts 

Number of threads
Nthread 

Beams per thread
Nb/t 

Solution time 
Δttot,conv 

1 2,920 12.090 s 

2 1,460 6.506 s 

4 730 3.510 s 

8 365 2.012 s 

16 183 1.139 s 

20 146 0.967 s 
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1.5.2 Monostatic frequency sweeps .5.2 Monostatic frequency sweeps 
Often the monostatic scattering of the object must be determined, where the sound source is po-

sitioned at each evaluation point (“field point”). 
Often the monostatic scattering of the object must be determined, where the sound source is po-

sitioned at each evaluation point (“field point”). 
Usually, an outer loop over the frequency range and an inner loop over the field points is performed. 

Thus, the total time Δttot,conv. is linearly dependent on the sum of the computational time per frequency 
Δtf and per field point Δtsrc, on the number of frequencies Nf and of field points Nfp (Eq. 3): 

Usually, an outer loop over the frequency range and an inner loop over the field points is performed. 
Thus, the total time Δttot,conv. is linearly dependent on the sum of the computational time per frequency 
Δtf and per field point Δtsrc, on the number of frequencies Nf and of field points Nfp (Eq. 3): 

Δttot,conv ≈ (Δtsrc + Δtf) × Nf × Nfp Δttot,conv ≈ (Δtsrc + Δtf) × Nf × Nfp (3)(3)

However, for the BEAM process it is useful to change the order so that the outer loop runs over the 
field points and the inner loop over the frequencies. All geometric (field point specific) calculations 
(Δtsrc) are independent of the current frequency and must be done only once per frequency step (outer 
loop). For the following frequency values only the calculation of transmission and reflection 
components (requiring Δtf) must be performed per field point and can be carried out within the inner 
frequency loop (Eq. 4): 

However, for the BEAM process it is useful to change the order so that the outer loop runs over the 
field points and the inner loop over the frequencies. All geometric (field point specific) calculations 
(Δtsrc) are independent of the current frequency and must be done only once per frequency step (outer 
loop). For the following frequency values only the calculation of transmission and reflection 
components (requiring Δtf) must be performed per field point and can be carried out within the inner 
frequency loop (Eq. 4): 

Δttot,opt ≈ (Δtsrc + Δtf) × Nf  +  (Δtf × (Nfp - 1)) Δttot,opt ≈ (Δtsrc + Δtf) × Nf  +  (Δtf × (Nfp - 1)) (4)(4)

This allows the reduction of the computation time starting at the second frequency (for a total of 21 
frequencies) to about 1/20 of the value of the first calculation (Table 3). 

This allows the reduction of the computation time starting at the second frequency (for a total of 21 
frequencies) to about 1/20 of the value of the first calculation (

Table 3 - Example for the reduction of the solving times for monostatic frequency sweeps Table 3 - Example for the reduction of the solving times for monostatic frequency sweeps 
Table 3). 

Number of frequencies 
Nf 

Number of frequencies 
Nf 

Solving time 
Δttot,conv (conv.) 

Solving time 
Δttot,conv (conv.) 

Solving time 
Δttot,opt (opt.) 
Solving time 
Δttot,opt (opt.) 

Time per freq. 
Δtf,opt (opt.) 

Time per freq. 
Δtf,opt (opt.) 

1 198 s 198 s  198 s

2 396 s 209 s  105 s

21 8,320 s 401 s  19 s

2. RESULTS 
In this paper the results of the BEAM method are presented for thin-walled structures. Details, 

results and computing times for rigid calculations can be found in (3).Within all calculations, water 
was used as the surrounding fluid. 

2.1 Example 1: Simple cone, sound impinging on the cone end 

A simple thin shell cone with an apex angle of 90° and a radius and length of 1 m is used as the first 
example (Figure 6). A plane wave is impinging on the cone end in positive X direction (green arrows 
in Figure 6 and 7). The evaluation points are placed on a circle in the XY-plane, using a distance of 10 
km, and the resulting pressure in the far field is calculated back to a distance of 1 m to the center, 
giving the normalized pressure level Lp,n in [dB] (blue curves). 

 

 
Figure 6 - Cone with an apex angle of 90°,

plane wave in positive X direction  
Figure 7 - normalized pressure level (polar plot). 

shell cone, f = 10 kHz, steel, 1 mm 
This example allows the comparison with results obtained from a FEM based application 

(COMSOL, red curves), using the rotation-symmetric 2D case to reduce the FEM computation times.  

Page 4 of 10  Inter-noise 2014 



Inter-noise 2014  Page 5 of 10 

In the following the results will be always displayed as a curve over the evaluation angle in order to 
illustrate the quantitative differences. 

Case 2.1.a: Steel, 1 mm (Figure 8) 
The maxima at ±90° and in the “shadow” at 0° are clearly visible, the monostatic value (here at 

180°) is around -23 ... - 26 dB. The quantitative differences between both methods for the 1 mm steel 
shell are less than 3 dB, with regard to the maxima they are less than ±1 dB. 
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Figure 8 - normalized pressure level of the shell cone at f = 10 kHz, steel, 1 mm 

Case 2.1.b: Steel, 2 mm (Figure 9) 
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Figure 9 - normalized pressure level of the shell cone at f = 10 kHz, steel, 2 mm 

The quantitative differences are still very small. 

Case 2.1.c: Steel, 10 mm (Figure 10) 
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Figure 10 - normalized pressure level of the shell cone at f = 10 kHz, steel, 10 mm 

The differences at the maxima are still very small, but in the “quieter” regions (below -10 dB) first 
differences of up to 10 dB are coming up. 
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2.2 Simple cone, steel, sound impinging into the cone opening 

Now the plane wave is impinging into the cone opening in negative X direction (green arrows, 
Figure 11 and 12). The main difference compared to the sound source impinging on the cone end is the 
higher monostatic reflection (here at 0°, Figure 12) of -11 (FEM) ... -15 dB (BEM) due to the mir-
ror-like reflection in the cone, while the other maximum values are nearly equal. 

 

 

Figure 11 - Cone with an apex angle of 90°, 
plane wave in negative X direction 

Figure 12 - normalized pressure level (polar plot). 
shell cone, f = 10 kHz, steel, 1 mm 

Case 2.2.a: Steel, 1 mm (Figure 13) 
Figure 13 shows the values over the elevation angle. Please note that these angle-dependent values 

are “shifted” by 180° due to the change of the plane wave direction when looking at the previous 
results (cases 2.1.a ... 2.1.c). 
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Figure 13 - normalized pressure level of the shell cone at f = 10 kHz, steel, 1 mm 
The quantitative differences between both methods for the 1 mm steel shell are small at the maxima 

(less than 4 dB), only where the levels become below -30 dB, some bigger differences can be found 
(dotted circles). 
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Case 2.2.b: Steel, 10 mm (Figure 14) 
The level at the monostatic evaluation point (0°) grows with the thickness of the shell due to the fact, 

that the problem approaches the “rigid” case (green graph). 
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Figure 14 - normalized pressure level of the shell cone at f = 10 kHz, steel, 10 mm 
While all pressure level values are increasing with regard to the thickness of the shell, the quan-

titative differences between the FEM and the BEAM solution are still at about max. 4 dB in the level 
range above -20 dB, except at ±90° (dotted circles), where the values of the FEM result are about 10 dB 
higher due to the fact, that the BEAM method is not able to consider the diffraction at the edge of the 
cone. 

2.3 Example 2: Cone within a sphere 

A rigid cone with a radius and length of 1 m is placed in a steel shell sphere with a radius of 1.5 m 
and 20 mm thickness (Figure 15). Water is used for the inside and the outside fluid. 

The structures are hit by a plane wave in negative x-direction (green arrow). The normalized 
backscattered pressure level Lp,n is evaluated in the far field at a monostatic field point (xFP = 10 km, 
yFP = 0 m, zFP = 0 m). 

 
Figure 15 - Cone with steel shell 

At low frequencies, it is expected that the influence of the rigid cone is visible, while with 
increasing frequency the outer shell dominates and the normalized pressure level will converge against 
the analytic value for a rigid sphere (r = 1.5 m, f = 10 kHz) in water of approx. -2.5 dB. 
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The result of the BEAM method (Figure 16, green curve) can be compared with a FEM based 
solution (magenta curve). Additionally, the results for a rigid cone only (blue curve) and a rigid sphere 
(orange curve) with the same size as the steel shell are shown. 
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a) BEAM, steel shell (20 mm) with rigid cone  
b) FEM (2D, COMSOL 4.4.0.150)
c) BEAM, rigid cone only
d) BEAM, rigid sphere only

 

Figure 16 - normalized pressure level of the cone with a shell sphere (steel, 20 mm) 
at the monostatic field point [10 km; 0 m; 0m], frequency range: 0 ... 20 kHz 

Although both curves are oscillating heavily, still a certain quantitative average agreement can be 
seen, even the expected approach to the respective rigid equivalents. 

Obviously, both methods seems to be very sensitive to small changes in frequency and geometry, so 
it is not easy to compare both solutions with regard to quality and quantity. 

2.4 Example 3: Complex model of a round cylinder with triple mirrors and a conical shell 

To illustrate the advanced capabilities of the BEAM method, a rounded cylinder is used with 
several triple mirrors on the caps. The cylinder is surrounded by a conical shell (Figure 17, approx. 
size 49 × 10 × 10 m). This model is one case of the BeTSSI-II workshop presented in (4). 

The inner cylinder and the triple mirrors (“cat-eyes”) at the left end are represented by steel with a 
thickness of 2 cm and filled with air. The outer conical hull is made of steel with a thickness of 8 mm, 
filled with and surrounded by water.  

 

Figure 17 - Complex model of a round cylinder with one resp. four triple mirrors at the ends, 
surrounded by a conical rounded shell 

A grid in the form of a spherical segment (longitude λL of -180 ... +180°, latitude φB of -20 ... +20°, 
using angular steps of 0.5°) is placed in the far field at a distance of 10 km around the object. 

Its nodes are used as evaluation points (total 58,401 points) for a monostatic calculation, that means, 
the position of the sound source was moved to each evaluation point. For a better representation of the 
results, a projection distance of 30 m is used (Figure 18). The size and complexity of this model makes 
a monostatic calculation with BE or FE methods in a realistic time almost impossible, and is feasible 
only with the use of the BEAM method. 
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Figure 18 - Spherical evaluation surface (58,401 nodes), using a projection distance of 30 m 

The normalized sound pressure level Lp,n was calculated for a total of 21 frequencies (f = 8 ... 12 
kHz, step width Δf = 0.1 kHz) for all 58,401 evaluation points, in addition an appropriate averaging 
process was carried out over all frequencies used (Figure 19). 

 

back surfaces 
(double mirrors) 

front surfaces 
(double mirrors) 

triple mirrors 
 (3 of 5) 

Figure 19 - averaged normalized pressure level Lp,n for faver = 10 kHz 
One can clearly see the effects of the triple mirrors in the front and rear (brown dashed arrows), as 

well as the double reflections at these parts (purple arrows). 
The advantage of averaging over the frequencies in comparison with a single frequency solution 

(Figure 20) having strong interference patterns is clearly visible. 

 
Figure 20 - normalized pressure level Lp,n for f = 8 kHz, color range adapted to 0 ... 40 dB 

The computation time for all 58,401 evaluation points and all 21 frequencies was about 6,976 s on 
a 20 core workstation, which corresponds to a mean solving time of 0.119 s per point. 

Inter-noise 2014  Page 9 of 10 



Page 10 of 10  Inter-noise 2014 

Page 10 of 10  Inter-noise 2014 

Figure 21 shows the planar projection of the pressure as a 2D representation. 

 

Figure 21 - planar projection of averaged normalized pressure level Lp,n for faver = 10 kHz 
Here, a so-called “analyzer” allows the selection of hotspots by specifying a longitude (here: λL = 

-53°) and a latitude (here: φB = 15°) angle. Then, a separate calculation can be performed providing the 
corresponding pressure distribution on the basis of an integration over all the beams in the far field. 

 

triple mirror area & 
corresponding beam 
path pattern 

Figure 22 - Result of the “analyzer” at λL = -53° and φB = 15° (with beam path pattern) 
The maxima at this point which results from the triple mirror at the front of the inner cylinder can 

be clearly identified. It is also possible to visualize the corresponding beam path pattern. 

3. CONCLUSIONS 
The obtained results show the good agreement between the approximate BEAM method and the FE 

method for coupled problems with thin shells where applicable. 
The results of both methods for the calculation of frequency sweeps are still extremely sensitive to 

small changes in frequency and material parameters, here further investigations and appropriate im-
provements are still necessary. 

The primary advantage of the BEAM method is the high computational speed, especially in 
monostatic calculations for multiple frequencies, and the ability to take into account regions of mul-
tiple reflections. However, the method can only be used for computations in the far field, because it 
does not provide surface-specific values. 

The analysis function described also needs further development in order to represent the complete 
beam path for a selected point in detail, for example. 
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