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ABSTRACT 

As part of the research project "Computational Acoustics", the ray tracing-based solver 

BEAM has been developed in recent years to determine the backscattered sound pressure 

in the far field. This solver is able to calculate the scattering of complex structures 

composed of fluids and / or elastic materials (in the form of thin layers). Due to its high 

computing speed, it is therefore well suited for sweeps over a given frequency range. 

The paper introduces an extension of the postprocessor, which converts a transfer function 

into a temporal or spatial impulse response by means of the FFT and displays it 

graphically, also in 3D. This representation allows the user a visual assignment of the 

signals to the external and possibly internal structure of the objects observed. 

Using a complex structure with different material combinations, first results for the 

backscattered sound field are presented, analyzed and, if available, compared with results 

of BEM and FEM calculations. 
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1 INTRODUCTION / BASICS OF THE BEAM PROCESS 

The BEAM method3 is a ray tracing-based solution method, which uses a plane wave sound 

source to determine the "start" beams incident on a structure. It is possible to use rays of fixed 

"size" (resp. area) or element-specific rays (one per element). 

The ray tracing takes place up to a level Lb, max, taking into account shell boundary 

conditions, transmittance and/or reflection factors, and determines therefrom transmitted or 

reflected "child" rays and their pressure components. 

An example of the ray path within a test structure up to a level Lb, max = 5 is shown in Figs. 1 

(2D) and 2 (3D). The outer shell is having a transmission and a reflection factor, while the inner 

angle (yellow) is sound-hard and thus fully reflecting. “T” marks a transmitted, “R” a reflected 

beam and the numbers represent the tracing level (beginning at 0 for the initial “start” beam). 

 

 

Fig. 1 – 2D ray tracing (maximum level 5). 

 

Fig. 2 – 3D ray tracing (maximum level 5). 

In order to find the elements hit by a beam without having to perform a time-consuming 

1:Nelem comparison, a boxing method from the Fast Multipole Method1,2 is used to detect the 

appropriate elements. 

A post processing calculation provides the values of the backscattered sound in the far field 

at given evaluation points. 



2 SAMPLE MODEL 

The model used consists of a spherical surface cut-out ("outer shell") and a cone shell, 

which is covered with a round plate (in total 13,084 elements). Figs. 3 and 4 show the model in 

3D (shaded) and as a partial 3D grid model to clarify the construction. 

    

Fig. 3 – shaded 3D model. Fig. 4 – partially rasterized 3D model. 

Fig. 5 shows a cross section of the model and the relevant materials and dimensions. Inside 

and outside the structures there is water (speed of sound cwater = 1,500 m/s). 
 

 

Fig. 5 – Cross section and dimensions of the model used. 

The incident sound travels in positive X-direction and thus hits perpendicular to the outer 

shell. For ray tracing, this results in a large number of possible paths, so that a maximum tracing 

level with Lb, max = 9 has been used for this model. 



3 CALCULATION OF THE TRANSFER FUNCTION (FREQUENCY SWEEP) 

The BEAM method was used to calculate the backscattered sound pressure in the far field 

for a frequency range between 2 Hz and 100 kHz with a step size of Δf = 2 Hz (Nfreq = 50,000). 

Fig. 6 represents the transfer function for a monostatic evaluation point at x = -10 km, 

whereby in all the following figures the normalized pressure (TES, target echo strength, 

recalculated to a distance of 1 meter) is given. Fig. 7 shows a section of it up to 10 kHz. 

 

0 10 20 30 40 50 60 70 80 90 100
frequency [kHz]

-50

-40

-30

-20

-10

0

10

20

30

T
E

S
 [

d
B

]

 

Fig. 6 – TES level in the far field, f = 2 Hz ... 100 kHz, BEAM solver 

(computing time: approx. 108 s). 
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Fig. 7 – TES level in the far field, f = 2 Hz ... 10 kHz (section of Fig. 6). 

In Fig. 7, two frequencies f1,min = 4 kHz (green) and f2,max = 4.8 kHz (purple) are marked, 

which represent a minimum resp. maximum in the transfer function and which are used in the 

following section. 

 

f2,max = 4.8 kHz 

f1,min = 4 kHz 



4 CALCULATION OF THE IMPULSE RESPONSE BY MEANS OF FFT 

By means of the FFT and the desired transfer function in the frequency domain, a 

corresponding impulse response in the time domain is generated from a simple sine pulse of a 

given duration (Δtin = 2 ms, see Fig. 8) and fixed frequency. 
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Fig. 8 – Excitation pulse, Δtin = 2 ms, f = 4.8 kHz. 

As already indicated in Fig. 7, f1,min = 4 kHz and f2,max = 4.8 kHz were chosen as examples 

of excitation frequencies, since there exists a minimum resp. maximum in the transfer function. 

The time assignment of the pressure in the following figures was distance-corrected according to 

the evaluation point so that the time point t = 0 corresponds to the "beginning" of the response. 
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Fig. 9 – Impulse response for f1,min = 4 kHz (pressure over time). 

0 0.5 1 1.5 2 2.5 3 3.5 4
time [ms]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p
re

s
s
u

re
 a

t 
ti

m
e

 [
N

/m
²]

 

Fig. 10 – Impulse response for f2,max = 4.8 kHz (pressure over time). 



The differences in the amplitude of the impulse response for both frequencies, especially in 

the range between 1.1 and 2.5 ms, corresponds to the expected minimum at f1,min = 4 kHz resp. 

maximum at f2,max = 4.8 kHz in the transfer function in the frequency domain (Fig. 7). 

 

A time interval of 1 ms when using cwater = 1,500 m/s corresponds to a running distance of 

approx. 0.75 m (round trip). Accordingly, the pressure profile over the distance can be displayed 

(Fig. 11). 
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Fig. 11 – Impulse response for f2,max = 4.8 kHz (pressure over distance). 

4.1 3D visualization 

The postprocessor offers the option of displaying the received impulse responses in the 3D 

representation (Fig. 12). 

 

Fig. 12 – Visualization of the impulse response in 3D for f2,max = 4.8 kHz 

 

 



4.2 Evaluation of the impulse response 

If one chooses a suitable viewing plane in the 3D view, then the occurring events, in 

particular in connection with the "pressure over distance" representation (see Fig. 11), can be 

identified more easily (Fig. 13, events E1 .. E4). 

 

Fig. 13 – Visualization of the impulse response in 3D in the XZ plane for f2,max = 4.8 kHz 

(numerical values represent the transit distance) 

E1: first response of the outer shell 

E2: Round cover plate response at approx. 0.47 ms (≙ approx. 0.35 m) 

E3: "strong" response of the cone shell ("double mirror"), all running times and distances 

within the cone are identical (about 1.33 ms ≙ approx. 1 m) 

E4: "End" of the path within the cone, decay of the response (tE4 - tE2 ≈ Δtin = 2 ms) 

 

5 COMPARISON WITH OTHER CALCULATION METHODS 

Particularly in the "low" frequency range (up to approx. 10 kHz in this case), the BEAM 

method often yields insufficient results due to the far-field approximations used. 

Fig. 14 shows a comparison of the transfer functions for a frequency range up to 20 kHz for 

different calculation methods (BEAM [▬], indirect BEM4 (IBEM) [▬] and combined with a 

FEM shell boundary condition for the outer shell [▬]). 
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a) only IBEM (iterative solver, GMRES)
b) FEM & IBEM (direct solver, Intel MKL / DSS)
c) BEAM (Raytracing)

 

Fig. 14 – Normalized sound pressure level in the range up to 20 kHz using different methods. 

Note on the calculation times (6,000 frequencies, up to 12 kHz): 

- only IBEM: approx. 2.5 s per frequency 

(13,084 degrees of freedom, in total approx. 4:10 h) 

- FEM & IBEM solution: approx. 25 s per frequency 

(28,218 degrees of freedom, in total 41:45 h) 
 

At lower frequencies, the results of the methods differ more, especially the resonances 

resulting of the FEM shell are clearly visible. At the higher frequencies, the pressure curves are in 

better agreement. This offers the generation of a "composite" transfer function. 

 

5.1 "Combined" transfer function 

The postprocessor has been extended by a corresponding combining option including a 

smoothing function, where the frequency ranges or transitions requested can be defined 

separately. A corresponding result (section up to 20 kHz) is shown in Fig. 15. 
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Fig. 15 – Combined normalized sound pressure level (section up to 20 kHz). 

FEM [▬]: up to 8 kHz, indirect BEM [▬]: 6 - 20 kHz, BEAM [▬]: 18 - 100 kHz 



Results for impulse responses using the combined transfer function were not available at the 

time of creating this paper, but are expected to be available in the form of an updated version on 

our website (http://projekt.beuth-hochschule.de/ca, see "Veröffentlichungen, Projekt Compu-

tational Acoustics I & II") at the end of August 2018. 

 

6 CONCLUSIONS 

The BEAM method is well suited for the rapid generation of FFT-suitable transfer functions 

(with equidistant frequencies), the resulting impulse responses reflect the expected behavior of 

the test structure. 

A calculation with other numerical methods (conventional BEM, indirect BEM, FEM) is 

feasible, but requires a much greater amount of computational time and is therefore usually only 

useful for the low to medium frequency range. 

A first option for the creation of a combined transfer function using partial solutions 

generated with different solving methods has been implemented, but requires further 

investigation. 
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