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ABSTRACT 
Within the framework of research projects in the field of "Computational Acoustics", a powerful BEM-based 
code for the determination of the backscattered sound pressure level in the far field has been developed in 
recent years, using different solution methods (direct and iterative solver, fast multipole method, ray tracing 
method etc.). 
This code has been extended so that in addition to the "classic" boundary conditions (pressure, normal 
velocity, impedance, inertial coupling, etc.), additional FEM shell conditions and thus elastic material 
properties can be taken into account. For this purpose, an additional FEM equation system is set up for the 
elements concerned which is integrated directly into the BEM equation system via appropriate transformation 
matrices. 
The solution of this overall system can be done by means of direct equation solvers (based on a complete 
sparse matrix), by eigenvalue calculations or by the so-called Schur method (using iterative solvers). 
The paper deals with the mathematical and physical fundamentals, shows the differences between the solution 
methods of the entire system and presents the results of test structures. As far as available until then, a 
comparison is also made with results from "pure" FEM calculations. 
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1. INTRODUCTION 
The calculation of the sound pressure in the far field for more complex structures of thin elastic 

shells, which are in liquid media and interact with them, is done for the low and middle frequency 
range mostly using the Finite Element Method (FEM). However, this is often no longer feasible with 
justifiable effort, especially for objects with larger dimensions.  

Therefore, an already developed powerful BEM application has been extended to the possibility of 
defining thin shells as a "boundary condition" in the form of FEM shell elements, without the need 
for changes to the surface structures used. 

This takes into account the elastic material properties of the thin shells and binds them directly 
into the BEM, without the need for additional applications or calculation steps. 

2. BASICS AND FORMULATIONS 

2.1 Used FEM shell elements and matrices 
The presented method uses simple triangular planar FEM shell elements, which are assigned an 

elastic material and a shell thickness. The evaluation of the associated physical quantities 
(displacement , rotation angles , forces ) takes place at the "corners" (nodes) of the elements. 

For the calculation of the element-specific mass matrices  and stiffness matrices , the 
Kirchhoff method, as described in the formula work in [1], Chap. 7 and 8, is currently used. 

These submatrices are inserted into the global sparse FEM matrices  and , ordered 
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according to the above physical quantities, and combined within a frequency-dependent global FEM 
matrix  of order  (Eq. (1)). 

(1) 

This results in the frequency-dependent FEM equation system used for all solution variants: 

(2) 

2.2 Used signs and symbols 

 identity matrix 
 Areas of the surface elements 
 BEM matrix (indirect BEM, frequency-dependent, dense) 
 Pressure difference (indirect BEM) 

 Density of the surrounding material 
 Sound velocity in the surrounding material 

 Burton-Miller-factor 
 incident normal velocity 

 Number of nodes at the FEM elements 
 Number of indirect BEM elements 

 FEM matrix (frequency dependent), also  
 Matrix vector product part (depending on context) 

2.3 Structure of the complete system of equations (in combination with the indirect BEM) 
Within the BEM calculations, constant plane elements are used (collocation) and the physical 

quantities ( , ) are evaluated in the element center. The coupling with the node-based FEM 
components is made with two sparse transformation matrices (  and ). 

The method couples the FEM with the indirect BEM (identical fluid on both sides of the elements, 
as used within the inertial coupling method, see [2]) and leads to the following system of equations:  

(3) 

This can be simplified by eliminating  to 

(4) 

and by eliminating  to 

(5) 

or in compressed form: 

(6) 
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3. USED SOLUTION METHODS 
Three different solution methods were implemented to take into account the FEM-specific material 

properties: 

3.1 Combined sparse matrix (FULL SPARSE mode) 
In this mode the total matrix of FEM and BEM coefficients according to Eq. (5) is completely 

build and solved using a direct solver for sparse matrices (Intel DSS direct sparse solver or PARDISO 
sparse solver). 

Advantages: 
 For so-called monostatic calculations with many right-hand sides according to the incident sound 
source position, only a one-time factorization of the combined matrix is required, and the 
subsequent solution process for each right-hand side is very fast. 

Disadvantages: 
 The memory requirement for the coefficients in a sparse matrix is higher (i.g. twice the size) 
since the BEM fraction  is fully populated and an additional column index is required per 
coefficient entry. 

 During the factorization phase, sparse solvers require about 4 to 5 times the memory requirement 
of the output matrix. Since the solvers generally do not check this in advance, they may crash at 
this point. 

3.2 Using the Schur method (SCHUR mode) 
The basis of the Schur method is the simplified FEM equation system  according to Eq. (6). 

From this,  can be extracted 

(7) 
and the system of equations in Eq. (6) can be converted into 

(8) 
An FEM coefficient matrix   with 

(9) 
is build, which is added to the BEM matrix , and only 

(10) 
has to be solved with a direct equation solver. 
However, the formation of the inverse  is very time-consuming and hardly usable in practice.  
Alternatively, if an iterative solver is used for which matrix vector products are required per 

iteration vector  according to 
(11) 

the FEM matrix vector product part  can be calculated much more simply by means of 

(12) 

In order to avoid the formation of   at this point, an auxiliary vector 

(13) 
is generated and from this a Schur solution vector  is calculated by solving the sparse system 

of equations 
(14) 

with the aid of a sparse solver. This simplifies Eq. (12) to 
(15) 

Since  from Eq. (14) has to be factorized only once and then only has to be solved per iteration 
vector , the computing time per iteration is much lower. 
  

7499



 

 

Advantages: 
 Only the memory required for the BEM matrix  is needed, the additional  values are 
added up. Also, the amount of memory required for factorization usually does not increase for an 
equation solver for dense matrices. 
 When using iterative solvers, the required matrix vector product parts of Eq. (11) can be prepared 
by rapid approximate methods, such as the fast multipole method (MLFMM). This will make 
significantly larger numbers of elements possible. 

Disadvantages: 
 For frequency sweeps,  and  from Eq. (14) must be reassembled in accordance with Eq. 
(1) and factorized for each frequency. 

3.3 Using eigenvalues (EIGEN mode) 
In this mode, a predefined number  of eigenvalues or vectors based on the frequency-

independent FEM matrices  and  from Eq. (1) is determined by a so-called eigenvalue solver 
and stored in an eigenvalue matrix . 

Using these matrices, two "small" square frequency-independent diagonal matrices  and  
are formed by means of 

 and (16) 

(17) 
with the order of . 
The eigenvalue matrix  is then reduced to its "lower" half (belonging to the displacement ) 

( ), since the rotation angles are now no longer needed, and two auxiliary matrices  and  
are generated by 

 and (18) 

. (19) 
Now, a frequency-dependent matrix  is generated by means of 

, (20) 
whereby the formation of the inverse here is not so time-consuming due to the "small" order of 

. 
From this, an auxiliary matrix  is generated by means of 

. (21) 
The matrix-matrix product of these auxiliary matrices is given by 

. (22) 
As in the Schur method, it corresponds to an FEM coefficient matrix of the same order as that of 

the BEM matrix and is added to it, so that finally only the system of equations  
(23) 

must be solved. 
Advantages: 
 As with the Schur method, only the memory needed for the fully populated BEM matrix  is 
required. 

 For frequency sweeps, the eigenvalues need to be determined only once (based on the highest 
desired frequency), accordingly, the time required decreases after the first for all following 
frequencies. Furthermore, only the frequency-independent auxiliary matrices  and  must 
be "saved", all other variables can be discarded to save memory space.  

 Using an iterative solver (e.g., GMRES), the time-consuming formation of the c 
oefficients can be replaced by a FEM MVP part : 

(24) 
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This can be calculated very quickly by means of 
, (25) 

since the order of the matrices  and  is significantly smaller than that of , while the 
BEM component 

(26) 
is conventionally calculated. 
 Here too, in the case of iterative solvers, the required matrix vector products of Eq. (26) can be 
formed by rapid approximate methods. 

 It is possible to determine the eigenvalues for individual FEM areas separately, this can lead to 
a lower number of required eigenvalues and thus reduce the time required.  

Disadvantages: 
 The number of eigenvalues  required for a good quality of the solution can be estimated 
poorly in advance, since this strongly depends on the model and the boundary conditions. 
Accordingly, this specification must be checked manually and, if necessary, be increased 
adaptively, in which case the time required to determine the eigenvalues also increases 
disproportionately. 

4. RESULTS FOR A FREQUENCY SWEEP 

4.1 Used model 
The model used (Figure 1) consists of a conical shell made of 6,058 triangular elements with a 

radius of 1 m, a thickness of 1 cm and steel as material, surrounded by water.  

 

Figure 1 - used model 
A plane incident wave in the negative X direction is used as a sound source to compare the results 

with the FEM COMSOL application, which gives a shorter calculation time due to the rotational 
symmetry. 
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4.2 Results 
For a frequency range of 100 Hz to 1 kHz, the normalized sound pressure level in the far field 

was determined in 0.5 Hz increments (  = 1,801 frequencies) at a monostatic evaluation point 
at position [10, 0, 0 km] in order to be able to clearly recognize occurring resonances (Figure 2). 

The maximum allowable relative error for the iterative solvers (b , d, g) has been set to 10-4. 
 

 
Figure 2 - Sound pressure level at a monostatic evaluation point at position [10, 0, 0] km 

(  = 100 … 1,000 Hz,  = 0,5 Hz,  = 1,801) 
 
All three FEM calculation variants (full sparse matrix, eigenvalues and Schur method, a ... d) agree 

very well, the differences are, except for some isolated spikes at some frequencies, below one dB. 
The difference to the indirect BEM (g) using the thin-shell inertial coupling method according to 

[2] is clearly seen and shows the great influence of the elastic material properties.  
In comparison to the FEM results of COMSOL (e, f), a frequency shift appears with increasing 

frequency (with similar maxima and minima values). This is due to the different methods for 
calculating the FEM matrices (Kirchhoff method in our inhouse code, Reissner-Mindlin method in 
COMSOL) and requires further investigation. For better comparability, therefore, an additional 
implementation of the Reissner-Mindlin method for the own code is currently being prepared. 
 

For information, Table 1 gives the calculation times for the different results. 
The solution time of the FULL SPARSE variant is not significantly greater here than  in the other 

methods due to the "small" number of elements. 
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a) FEM, full sparse matrix (direct sparse solver, IMKL/DSS)
b) FEM, Schur mode (iterative solver, GMRES-HH)
c) FEM, eigenvalues, Nev = 500 (direct solver, IMKL/LA+ARP/DSS)
d) FEM, eigenvalues,  Nev = 500 (iterative solver, GMRES-HH+ARP/UMF)
e) rotationally symmetrical 2D-FEM (, COMSOL)
f) 3D-FEM (COMSOL)
g) only indirect BEM (inertial coupling, iterative solver, GMRES-HH)
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Table 1 - Calculation times for the frequency sweep 

Method / mode Calculation time [h:m:s] 

a) FULL SPARSE (direct) 3:48:55 
b) SCHUR-Modus (iterative) 2:57:57 
c) EIGEN-Modus (direct) 2:17:00 
d) EIGEN-Modus (iterative) 1:37:16 
e) 2D-FEM (COMSOL, rotationally symmetrical!) 0:07:12 
f) 3D-FEM (COMSOL) ca. 13 h 
g) only indirect BEM (iterative) 0:21:52 

 

4.3 Pressure differences at resonance points 
To illustrate the changes in the difference of the pressure on both sides of the elements at the 

resonance points, the following figures show the real part of the pressure difference  on 
the surface in the region around the first resonance point between 294 and 299 Hz. 
 

 
 = 294 Hz 

 

 
 = 295 Hz 

 
 = 296 Hz 

 
 = 297 Hz 

 
 = 298 Hz 

 
 = 299 Hz 

Figure 3 - , real part of the pressure difference on the surface 

 
The same value and color range (-15 ... +30 N/m²) is used in all 6 subfigures, so that it is easy to 

see how the pressure difference in the area around the resonance point increases significantly at approx. 
 = 297.15 Hz and then decreases again. Also the sign of the real part changes. 
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5. SUMMARY AND OUTLOOK 
The implemented FEM coupling methods show good agreement with each other and in comparison 

with commercial FEM applications.  
The speed advantage when using the BEM instead of the FEM in 3D is clearly visible.  
The use of iterative equation solvers in conjunction with the implemented SCHUR or EIGEN 

solution variants enables the combination with the multi-level fast multipole method. 
The code is currently being expanded for FEM shell boundary conditions with respect to closed 

structures, i.e., there is a vacuum inside the corresponding structural part.  
Also in the future, the combination of arbitrary boundary conditions within the same model should 

be possible, as well as the "tight clamping" of existing edges. 
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