N BEUTH HOCHSCHULE FUR TECHNIK BERLIN
m University of Applied Sciences

Felix Kunde and Petra Sauer

BEUTH HOCHSCHULE
N FUR TECHNIK
m BERLIN

University of Applied Sciences

PGMEMENTO

A GENERIC TRANSACTION-BASED
AUDIT TRAIL FOR SPATIAL
DATABASES

MOTIVATION

= Track all data changes in the database

= Revisit previous data versions

= Undo changes of certain write operations

= Work against multiple branches of a database

CONTEXT

= pgMemento is an Audit Trail in your DB

= Relies on transaction IDs, not timestamps
= Can help to define data lineage

= So far, its not version control to your DB

DML-AUDITING

IR R T

txid = 2800000 POINT(1 1)
SET type = 'moto' 2 bike POINT(1 2) 23
3 [POINT(2 2) 42

train

insert ‘ BEFORE statement-level trigger

" | tid | .. N tansacion d | op_id | Table_operation | _tablerelid _
10 2800000 r 50 2800000 4 UPDATE 2005030
I
TRANSACTION_LOG T ort TABLE EVENT LOG

DML-AUDITING

" event._id nm

FROM POINT(1 1)
table_event log 2 moto POINT(1 2) 23 *
WHERE :
transaction _id = txid current() 3 train FOUNTTIZ 2) 42
AND table relid = 2005030 AFTER
AND op id = 4; row-level trigger

EEE SN | id | Eventid | auditid | changes

> 100 50 23 {"type":"bike"}

insert

TRANSACTION TABLE
_LOG _EVENT ROW_LOG
_LOG

DDL-AUDITING

txid = 2900000 1 car POINT(1 1)
DROP type * 2 moto POINT(1 2) 23

3 train POINT(2 2) 42

insert

event trigger at ddl_command_start

EEEE IR nmm

insert insert
ROW_LOG
_> _> 200 75 2 {"type" "Car"}
TABLE 201 75 23 {"type":"moto"}
TRANSACTION _EVENT I 0 (type"train”)

LOG LOG

DDL-AUDITING

ﬂ geom m

POINT(1 1)
2 POINT(1 2) 23 *
3 POINT(2 2) 42

event trigger at
ddl_command_end

SELECT * FROM pg event trigger ddl commands () |

——— i auat_table_d | _column_name | data_type | tuid_range

100 1 type text [2700000,2900000)

AUDIT_TABLE [OG
- - AUDIT_COLUMN_LOG

QUERIES

For which transactions column Which tuples once contained certain combinations
'type' exists in the logs? of key(s) and value(s)?
SELECT DISTINCT SELECT DISTINCT

e.transaction id audit id
FROM FROM

pgmemento. table event log e pgmemento.row log
JOIN WHERE

pgmemento.row log r

ON r.event id = e.id changes @ > {"type": "bike"}'::jsonb;
WHERE B

r.audit id = 23

9

AND (r.changes I 'type'):;

Define restore
timestamp by picking
a transaction ID

THE CHALLENGE

RESTORE PREVIOUS VERSIONS OF TUPLES

Filter data by table

TRANSACTION_LOG TABLE EVENT _LOG ROW_LOG

These tables know
about the historic
structure of relations

AUDIT TABLE LOG

AUDIT_COLUMN_LOG

Historic data is here.
Highly scattered in case
of UPDATES. No
information about table,
transaction or time

Query and merge JSONB
logs to form complete
tuples and populate them
back to relational rows

10

RESTORE - PART 1

= Restore based on txid range
(inclusive lower boundary and
exclusive upper boundary)

= Only pick audit_ids where their
last event havn't been a delete

= Apply the restore query for rows
with audit_id 1 and 7

row_log

Tx (Insert) «<|
Tx (Update)
Tx (Delete) <

Restore timestamp
Tx

(1 121314151617)

(1,3,4,5,7)
(2,3,4,5,6)
(1,7)

audit ids

11

RESTORE — PART 2

= Strategy 1: Concat all JSONB logs in
reverse order starting from recent state
until upper boundary of search window
as duplicate keys get overwritten

= Strategy 2: For each column, search
for first occurence in the logs after
upper boundary of search window. If
nothing found query recent value.

Tx (Update)
Tx (Delete)

row_log

changes -> 'type'

{..,"type":"cycle", ..}

time slice where the

Restore timestamp

T—Tx

Tx (Update)

Tx (Delete) ——<

h

value has been

"bike"
{ 1A} type 1A} : "bike 1) }
{..,"type":"moto", ..}

12

FROM

)

P-

RESTORE - PART 3

SELECT

*

generate log entries(1,2800000, 'my table') entries
LATERAL (
SELECT

*

FROM

P/

jsonb populate record(
null: :my table,
entries

Works only with a template. Could be the
actual table, but to be correct in case of any
DDL changes, a temporary template can be
created on the fly with information from
audit_column_log.

13

REVERT

= Query all changes and referenced events for a given
txid (or range of txids) in reverse order

= Loop over result set and perform the opposite event

= Consider dependencies between tables in order to
avoid foreign key violations

14

O o0 N o v B W N

REVERT

CREATE TABLE

ALTER TABLE ADD COLUMN
INSERT

UPDATE

ALTER TABLE ALTER COLUMN
ALTER TABLE DROP COLUMN
DELETE

TRUNCATE

DROP TABLE

DROP TABLE

ALTER TABLE DROP COLUMN
DELETE

UPDATE

ALTER TABLE ALTER COLUMN
ALTER TABLE ADD COLUMN
INSERT

INSERT

CREATE TABLE

NULL

Changed fields of changed rows
All rows of altered columns

All rows of deleted columns

All fields of deleted rows

All fields of table

All fields of table (logged as truncate)

15

TO DOs

Branching concept

Log tables for more DB objects

Extending the test suite

Maybe: Logical decoding instead of triggers

16

TECHNICAL
DETAILS

= Written entirely in PL/pgSQL

= Requires at least PostgreSQL 9.5
= Repo: github.com/pgmemento

= LGPL v3 Licence

17

N BEUTH HOCHSCHULE FUR TECHNIK BERLIN
mm University of Applied Sciences

Felix Kunde
fkunde[at]beuth-hochschule.de

QUESTIONS? *

Sauer[at]beuth-hochschule.de

- & | e |/
. und Energie
Hnaea by: Smart Data
DLR

