Deep Artifact Suppressor
Das Ziel dieses Projekts besteht darin, unter Verwendung von Methoden des maschinellen Lernens die Qualität tomographischer Aufnahmen, hier stehen zunächst computertomographische Aufnahmen im Fokus, zu verbessern. Bedingt durch die den Aufnahmen zugrundeliegenden physikalischen Effekte, treten in Abhängigkeit des zu untersuchenden Objekts unterschiedliche Formen von so genannten Bildartefakten auf. Diese mindern zum einen die Bildqualität und erschweren des Weiteren auch die Interpretation der Ergebnisse. Durch die Verwendung realistischer Simulationsverfahren können künstliche Bilddaten generiert werden, welche diese Artefakte nur optional aufweisen. Auf diesem Wege können künstliche Bildpaare erzeugt werden, bei denen das eine Bild die Artefakte aufweist, während sie im anderen Bild simulationsseitig unterdrückt worden sind. Die so gewonnenen Daten sollen dann dazu verwendet werden, ein auf Verfahren des maschinellen Lernens basierendes Filter zu entwickeln, welches in der Lage ist, Artefakte auch auf realen Aufnahmen zu eliminieren. Notwendig hierzu ist eine möglichst optimale Anpassung der Simulation an den tatsächlich verwendeten Tomographen. Dies ist im Rahmen einer Bachelorarbeit und in Kooperation mit dem Bundesanstalt für Materialforschung und -prüfung BAM unter Verwendung der dort entwickelten Simulationssoftware aRTist bereits für den hochschuleigenen Nanofokus-Tomographen realisiert worden.